首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus infection of Brussels sprout crops was widespread in Britain in 1974–76. Infected plants contained mostly cauliflower mosaic (CaMV) and turnip mosaic (TuMV) viruses but occasionally broccoli necrotic yellows virus (BNYV) was also found. The most seriously affected cultivar was the F1 hybrid cv. Fasolt. Other hybrids including cvs Achilles, Citadel and King Arthur were more tolerant of infection. A key was developed for assessing the reactions of various F1 hybrids and their parent inbred lines to CaMV + TuMV. Tests showed that the mean symptom severity of hybrids was usually less than the mean symptom severity of the parent inbreds, indicating that resistance to infection is partially dominant. The reactions of infected inbreds grown in winter under glasshouse conditions (15–18°C) were closely correlated with those of plants grown in the field. Thus, rapid selection of virus-tolerant inbreds can be made under glasshouse conditions.  相似文献   

2.
The two main factors involved in field-scale production of seed of F1 hybrid Brussels sprouts are pollen availability and honeybee behaviour. Pollen availability depends upon the extent of winter survival of the parent inbreds, their flowering times, plant size and on the number of flowers per plant. Plant losses varied between inbreds and between sites and seasons. Differences in the commencement of flowering time in pairs of inbreds varied from 7 to 21 days, and plant size affected flower number. In hybrid seed-production there was a direct relationship between the number of mature flowers on each inbred and the percentage of non-hybrid seed produced from that inbred. Bees were highly selective in their visits to inbreds, and a mean selfing-to crossing-movement ratio of 30:1 was observed. This behaviour, together with pollen availability, greatly influenced the production of ‘sibs’. Radioactive experiments showed that the amount of cross-pollen carried by a bee decreased by about 30% at each flower visited but radioactive pollen grains were detected on the tenth flower visited. Of a number of factors investigated as possibly influencing bee behaviour, differences in flower colour and plant height were associated with discrimination between inbred lines.  相似文献   

3.
The genetic relationship between inbreds i and j can be estimated from pedigree or from molecular marker data. The objectives of this study were to: (1) determine whether pedigree, restriction fragment length polymorphism (RFLP), and simple sequence repeat (SSR) data give similar estimates of parental contribution and coefficient of coancestry (f ij ) among a set of maize (Zea mays L.) inbreds, and (2) compare the usefulness of RFLP and SSR markers for estimating genetic relationship. We studied 13 maize inbreds with known pedigrees. The inbreds were genotyped using 124 RFLP and 195 SSR markers. For each type of marker, parental contributions were estimated from marker similarity among an inbred and both of its parents, and were subsequently used to estimate f ij . Estimates of parental contribution differed significantly (α<0.05) between pedigree data and either type of marker, but not between the marker systems. The RFLP estimates of parental contribution failed to sum to 1.0, reflecting a higher frequency of non-parental bands with RFLP than with SSR markers. The f ij estimated from pedigree, RFLP, and SSR data were highly correlated (r=0.87–0.97), although significant differences were found among the three sets of f ij estimates. We concluded that pedigree and marker data often lead to different estimates of parental contribution and f ij , and that SSR markers are superior to RFLP markers for estimating genetic relationship. A relevant question is whether or not the inbreds previously genotyped with an older marker system (e.g., RFLP) need to be re-analyzed with a newer marker system (e.g., SSR) for the purpose of estimating genetic relationship. Such re-analysis seems unnecessary if data for the same type of marker are available for a given inbred and both of its parents. Received: 2 June 1999 / Accepted: 30 July 1999  相似文献   

4.
Molecular marker diversity among current and historical maize inbreds   总被引:25,自引:0,他引:25  
Advanced-cycle pedigree breeding has caused maize (Zea mays L.) inbreds to become more-elite but more-narrow genetically. Our objectives were to evaluate the genetic distance among current and historical maize inbreds, and to estimate how much genetic diversity has been lost among current inbreds. We selected eight maize inbreds (B14, B37, B73, B84, Mo17, C103, Oh43 and H99) that largely represented the genetic background of current elite inbreds in the U.S. seed industry. A total of 32 other inbreds represented historical inbreds that were once important in maize breeding. Cluster analysis of the inbreds, using data for 83 SSR marker loci, agreed well with pedigree information. Inbreds from Iowa Stiff Stalk Synthetic (BSSS), Reid Yellow Dent, and Lancaster clustered into separate groups with only few exceptions. The average number of alleles per locus was 4.9 among all 40 inbreds and 3.2 among the eight current inbreds. The reduction in the number of alleles per locus was not solely due to sample size. The average genetic distance (D ij ) was 0.65 among the eight current inbreds, 0.67 among the 32 historical inbreds, and 0.67 among all 40 inbreds. These differences were statistically insignificant. We conclude that genetic diversity among current inbreds has been reduced at the gene level but not at the population level. Hybrid breeding in maize maintained, rather than decreased, genetic diversity, at least during the initial subdivision of inbreds into BSSS and non-BSSS heterotic groups. We speculate, however, that exploiting other germplasm sources is necessary for sustaining long-term breeding progress in maize. Received: 21 August 2000 / Accepted: 5 January 2001  相似文献   

5.
Some breeders select inbreds from many F2 or backcross breeding populations, each with relatively few progenies. Other breeders select inbreds from only a few breeding populations, each with many progenies. My objectives were to: (1) determine the relative importance of parental selection, number of breeding populations, and size of each population, and (2) find optimum combinations between number and size of breeding populations. I assumed that a breeder has resources to test a total of 2,000 recombinant inbreds for a quantitative trait that was controlled by 100 additive loci and had a heritability of 0.20, 0.60, or 1.0. The parental inbreds had an inherent pedigree structure due to advanced cycle breeding. The parental inbreds were ranked according to their mean performance, and breeding populations were made among all parents, the top 25% of parents, and the top 10% of parents. I found that the issue of number versus size of breeding populations was only secondary compared with the ability to identify, prior to making the crosses, the breeding populations with the highest mean performance. For a given level of effectiveness of parental selection, the selection response was largest when the maximum number of breeding populations was used. The effect of the number of breeding populations was minor, however, when selection was practiced among the parents or when heritability was less than 1.0. The results suggested that, in practice, large selection responses could be obtained with a wide range of combinations between number and size of breeding populations.Communicated by H.C. Becker  相似文献   

6.
7.
RFLP markers and predicted testcross performance of maize sister inbreds   总被引:1,自引:0,他引:1  
 Inbreds selfed from the same F2 or backcross population are referred to as sister inbreds. In some situations, maize (Zea mays L.) sister inbreds may not have testcross data available for best linear unbiased prediction (BLUP) of single-cross performance. This study evaluated the usefulness of BLUP and restriction fragment length polymorphism (RFLP)-based coefficients of coancestry ( f ) in predicting the testcross performance of sister inbreds. Parental contributions (p) were estimated from 70 RFLP loci for 15 inbreds that comprised three sister inbreds selfed from each of five F2 populations. Estimates of p were subsequently used to calculate RFLP-based f. Grain yield, moisture, and stalk lodging data were obtained for 2265 single crosses tested by Limagrain Genetics in multilocation trials from 1990 to 1995. Performance of the sister inbreds when crossed to several inbred testers was predicted from the performance of the tested single crosses and RFLP-based f. Correlations between predicted and observed performance, obtained with a delete-one cross-validation procedure, were erratic and mostly low for all three traits. Correspondence was poor between ranks for predicted and observed general combining ability of the sister inbreds. The results suggested that the proportion of the genome derived by a sister inbred from a given parental inbred does not solely determine its testcross performance. The failure of BLUP and RFLP-based f to consistently predict testcross performance indicated that actual field testing will continue to be necessary for preliminary evaluation of sister inbreds. Received : 17 March 1997 / Accepted : 18 April 1997  相似文献   

8.
Maize (Zea mays L.) breeders evaluate many single-cross hybrids each year in multiple environments. Our objective was to determine the usefulness of genomewide predictions, based on marker effects from maize single-cross data, for identifying the best untested single crosses and the best inbreds within a biparental cross. We considered 479 experimental maize single crosses between 59 Iowa Stiff Stalk Synthetic (BSSS) inbreds and 44 non-BSSS inbreds. The single crosses were evaluated in multilocation experiments from 2001 to 2009 and the BSSS and non-BSSS inbreds had genotypic data for 669 single nucleotide polymorphism (SNP) markers. Single-cross performance was predicted by a previous best linear unbiased prediction (BLUP) approach that utilized marker-based relatedness and information on relatives, and from genomewide marker effects calculated by ridge-regression BLUP (RR-BLUP). With BLUP, the mean prediction accuracy (r MG) of single-cross performance was 0.87 for grain yield, 0.90 for grain moisture, 0.69 for stalk lodging, and 0.84 for root lodging. The BLUP and RR-BLUP models did not lead to r MG values that differed significantly. We then used the RR-BLUP model, developed from single-cross data, to predict the performance of testcrosses within 14 biparental populations. The r MG values within each testcross population were generally low and were often negative. These results were obtained despite the above-average level of linkage disequilibrium, i.e., r 2 between adjacent markers of 0.35 in the BSSS inbreds and 0.26 in the non-BSSS inbreds. Overall, our results suggested that genomewide marker effects estimated from maize single crosses are not advantageous (compared with BLUP) for predicting single-cross performance and have erratic usefulness for predicting testcross performance within a biparental cross.  相似文献   

9.
 Sugarcane mosaic virus (SCMV) causes considerable damage to maize (Zea mays L.) in Europe. The objective of the present study was to determine the genetic basis of resistance to SCMV in European maize germplasm and to compare it with that of U.S. inbred Pa405. Three resistant European inbreds D21, D32, and FAP1360A were crossed with four susceptible inbreds F7, KW1292, D408, and D145 to produce four F2 populations and three backcrosses to the susceptible parent. Screening for SCMV resistance in parental inbreds and segregating generations was done in two field trials as well as under greenhouse conditions. RFLP markers umc85, bnl6.29, umc10, umc44, and SSR marker phi075 were used in F2 populations or F3 lines to locate the resistance gene(s) in the maize genome. Segregation in the F2 and backcross generations fitted to different gene models depending on the environmental conditions and the genotype of the susceptible parent. In the field tests, resistance in the three resistant European inbreds seems to be controlled by two to three genes. Under greenhouse conditions, susceptibility to SCMV in D32 appears to be governed by one dominant and one recessive gene. Allelism tests indicated the presence of a common dominant gene (denoted as Scm1) in all three resistant European inbreds and Pa405. Marker analyses mapped two dominant genes: Scm1 on chromosome 6S and Scm2 on chromosome 3. Received: 17 November 1997 / Accepted: 25 November 1997  相似文献   

10.
An essentially derived variety largely retains the characteristics of a parental or ancestral variety. A consensus has not been reached regarding the threshold for declaring essential derivation in maize (Zea mays L.), partly because benchmark data are lacking. Our objective in this study, commissioned by the American Seed Trade Association, was to determine the range of parental contribution among maize inbreds developed without and with selection. Seed companies in North America contributed existing proprietary data on the molecular marker similarity of 100 or more families, developed without selection from F2 populations, with each of their parents. The companies also sent us seed samples of elite inbreds, developed with selection from F2 populations, for analysis using 60 RFLP marker loci and 20 SSR marker loci. Among the families developed without selection, the average parental contribution was close to the expected value of 0.50 for F2 populations. Specific families received up to 79% of their alleles from one parent. Although selection tended to increase the frequency of such transgressive segregants, it did not necessarily increase the maximum parental contribution in an F2 population. Parental contributions were consistent between the elite inbreds and their early-generation families. We conclude that inbreds with 70% to nearly 80% of their genome derived from one parent can be obtained from an F2 population. Further empirical data would be valuable particularly for backcross populations, which were not available in this study. Received: 21 June 2000 / Accepted: 28 July 2000  相似文献   

11.
Maize (Zea mays L.) breeders are concerned about the narrowing of the genetic base of elite germplasm. To reverse this trend, elite germplasm from other geographic regions can be introgressed, but due to lack of adaptation it is difficult to assess their breeding potential in the targeted environment. The objectives of this study were to (1) investigate the relationship between European and US maize germplasm, (2) examine the suitability of different mega-environments and measures of performance to assess the breeding potential of exotics, and (3) study the relationship of genetic distance with mid-parent heterosis (MPH). Eight European inbreds from the Dent and Flint heterotic groups, 11 US inbreds belonging to Stiff Stalk (SS), non-Stiff Stalk (NSS), and CIMMYT Pool 41, and their 88 factorial crosses in F1 and F2 generations were evaluated for grain yield and dry matter concentration. The experiments were conducted in three mega-environments: Central Europe (target mega-environment), US Cornbelt (mega-environment where donor lines were developed), and Southeast Europe (an intermediate mega-environment). The inbreds were also fingerprinted with 266 SSR markers. Suitable criteria to identify promising exotic germplasm were F1 hybrid performance in the targeted mega-environment and F1 and parental performance in the intermediate mega-environment. Marker-based genetic distances reflected relatedness among the inbreds, but showed no association with MPH. Based on genetic distance, MPH, and F1 performance, we suggest to introgress SS germplasm into European Dents and NSS into European Flints, in order to exploit the specific adaptation of European flint germplasm and the excellent combining ability of US germplasm in European maize breeding programs.  相似文献   

12.
The feasibility of producing commercially acceptable inbred lines of Brussels sprouts is investigated. Two experiments are described which examined the nature and extent of heterosis in this crop using the techniques of biometrical genetics. They indicate incomplete dominance for several production traits, lower F1 uniformity and the presence of inbreds that outyield some F1's. These results strongly suggest that recombinant inbred lines, possibly outyielding the better F1's could be produced. Five crosses were identified for inbreeding by SSD and 1000 lines are being produced from each. The principles upon which these crosses were identified are described.  相似文献   

13.
Molecular markers are useful for determining relationships and similarity among inbreds, especially if the proportion of marker loci with alleles common to inbreds i and j is partitioned into: (1) the probability that marker alleles are identical by descent (Mfij); and (2) the conditional probability that marker alleles are alike in state, given that they are not identical by descent ( ij). Our objectives were to: develop a method, based on tabular analysis of restriction fragment length polymorphism marker data, for estimating Mfij, ij, and the parental contribution to inbred progeny; validate the accuracy of the method with a simulated data set; and compare the pedigree-based coefficient of coancestry (fij) and Mfij among a set of maize (Zea mays L.) inbreds. Banding patterns for 73 probeenzyme combinations were determined among 13 inbreds. Iterative estimation of Mfij, ij, and the parental contribution to progeny was performed with procedures similar to a tabular analysis of pedigree data. Deviations of Mfij from pedigree-based fij ranged from 0.002 to 0.288, indicating large effects of selection and/or drift during inbreeding for some inbreds. Differences between marker-based estimates and expected values of parental contribution to inbred progeny were as large as 0.205. Results for a simulated set of inbreds indicated that tabular analysis of marker data provides more accurate estimates of Mfij and ij than other methods described in the literature. Tabular analysis requires the availability of marker data for all the progenitors of each inbred. When marker data are not available for the parents of a given inbred, Mfij and ij may still be calculated if parental contributions to the inbred are assumed equal to their expectations.  相似文献   

14.
Kinetics of Mitochondrial Complementation   总被引:1,自引:0,他引:1  
Mitochondrial complementation (enhancement of oxidative activity of mitochondrial occured when mitochondria of some inbrveds of eron were mixed in vitro. It was found that mixtures composed of various proportions of mitochondria of inbreds exhibited complementation. Extracts of mitochondria of one inbred did not promote complementation when they were added to infact mitochondria of inbreds exhihited complententation. Extracts of mitochondria of on einbred did not promote complementation when they were added to infact mitochondria of the second inbred. Serial dillutions of mixtures resulted in a rapid reduction of mitochondrial oxidation (QO2 N) suggesting that intimale association between mitochondria was minimized by the dilution and that this decreased complementation. Similar dilutions of mitochondria from inbreds did not decrease their specific activity. Kinetics of mitochondrial oxidation were measured polarographically and it was found that complementation was measurable immediately (1 min) following the mixing. This suggested that physical contact between mitochondria was necessary for complementation.  相似文献   

15.
Basal K+ uptake in the root midzone region (cm 2 + 3 + 4) of N and T cytoplasmic versions of each of four maize inbreds was equally sensitive to the toxin(s) of Helminthosporium maydis, race T. Basal K+ uptake in the root apex (0-1 cm) and augmented K+ uptake in the root midzone were more toxin-sensitive in inbreds W64A(T) and Mo17(T) than in inbreds W64A(N) and Mo17(N). This differential response of N and T cytoplasms to toxins was not found for corresponding cytoplasms of inbreds WF9 and B37.  相似文献   

16.
17.
Samples of Fx inbred lines, derived by doubled haploidy (DH) and single seed descent (SSD) from five spring barley crosses were compared for agronomic characters. It was shown that, over this range of diverse crosses, inbreds derived by either technique could surpass the better parent or even the heterotic F1. The means of the DH and SSD were, however, different for a number of characters, as well as differing from the mid-parent value. It was concluded that these differences stemmed from the presence of interacting genes showing linkage disequilibrium, although there was no unambiguous test to distinguish this from differential survival during the production of inbreds. This view was further supported by the finding that the DH sample, which tends to preserve existing linkages, produced a higher proportion of lines exceeding the better scoring parent when compared with the SSD population.  相似文献   

18.
Two maize inbreds, CM7 and CM49, and CM7 × CM49, their F1 hybrid (which displayed significant heterosis), were examined with regard to response to exogenous gibberellin A3 (GA3), and in their ability to metabolize GA20, a native GA of maize. The leaf sheath elongation response to GA3 was far greater for the imbreds than for their hybrid. The inbreds also displayed significant elongation of the leaf blades in response to GA3, whereas the hybrid was unaffected. Promotion of cell division in the leaf sheath of CM7 and the hybrid was effected by GA3, but no promotion of cell elongation was observed in CM49, even though significant leaf sheath elongation occurred. Shoot dry weight of both inbreds was significantly increased by GA3, but response by the hybrid in this parameter was slight and variable. Root dry weight of CM7 was significantly increased by GA3, but was unchanged in CM49 and the hybrid. Thus, inbred shoot dry weight increases effected by GA3 were not at the expense of the root system. Rapid metabolism of [2,3-3H]GA20 occurred in all genotypes, although genotypic differences were observed. The hybrid had the highest rates of metabolism to GA glucosyl conjugate-like substances. Oxidative metabolism was also fastest in the hybrid, followed by CM7, and slowest in CM49, the slowest-growing inbred. Thus, rate of GA20 metabolism is under genetic control in normal (i.e. not dwarfed) maize genotypes. These results, taken together with previous reports that the hybrid has significantly enhanced levels of endogenous GA-like substances, suggest that GA play a role in the expression of heterosis in maize.  相似文献   

19.
QTL mapping for plant-height traits has not been hitherto reported in high-oil maize. A high-oil maize inbred ‘GY220’ was crossed with two dent maize inbreds (‘8984’ and ‘8622’) to generate two connected F2:3 populations. Four plant-height traits were evaluated in 284 and 265 F2:3 families. Single-trait QTL mapping and multiple-trait joint QTL mapping was used to detect QTLs for the traits and the genetic relationship between plant height (PH) and two other plant-height traits. A total of 28 QTLs and 12 pairs of digenic interactions among detected QTLs for four traits were detected in the two F2:3 families. Only one marker was shared between the two populations. Joint analysis of PH with ear height (EH) and PH with top height (TH) detected 32 additional QTLs. Our results showed that QTL detection for PH was dependent on the genetic background of dent corn inbreds. Multiple-trait joint QTL analysis could increase the number of detected QTLs.  相似文献   

20.
Rhodes D  Rich PJ 《Plant physiology》1988,88(1):102-108
Glycinebetaine-deficient inbreds of Zea mays do not exhibit a general deficiency of nitrogenous solutes; the total free amino acid levels of betaine-deficient lines are not significantly less than those of inbreds which exhibit >100-fold higher betaine levels. Betaine-deficient inbreds are characterized by extremely low betaine: total free amino acid ratios (<0.0015). Highly significant correlations are demonstrated between the expected mid-parent and observed betaine:amino acid ratios of 30 hybrids of known pedigree. In 12 hybrids constructed from a betaine-deficient male parent (inbred 1506), the observed betaine:amino acid ratios of the hybrids are proportional to the betaine:amino acid ratios of the female parents (r = 0.83). Two hybrids, 1146 × 1074 and 1146 × 1506, were chosen for further genetic analysis. The common female parent (1146) and inbred 1074 both exhibit betaine:amino acid ratios of 0.090, a value which is approximately 90-fold greater than the betaine:amino acid ratio of inbred 1506. Hybrid 1146 × 1074 exhibits almost exactly twice the betaine:amino acid ratio of hybrid 1146 × 1506. If inbred 1506 is homozygous recessive for a single nuclear gene responsible for the phenotype of betaine deficiency, and if inbreds 1146 and 1074 are homozygous dominant for this allele, then this twofold difference in betaine:amino acid ratio must be associated with the homozygous dominant and heterozygous conditions, respectively, for 1146 × 1074 and 1146 × 1506. Evidence is presented from both greenhouse and field evaluations of F2 populations of these hybrids that a single nuclear recessive gene is most likely responsible for the phenotype of betaine-deficiency in inbred 1506. Approximately 25% of the F2 segregants from 1146 × 1506 exhibited extremely low betaine:amino acid ratios (<0.0015), whereas 0% of the F2 segregants from 1146 × 1074 exhibited this phenotype. The segregation patterns with respect to betaine:amino acid ratio suggest a 1:2:1 segregation ratio for homozygous recessive:heterozygous:homozygous dominant individuals within the 1146 × 1506-F2 population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号