首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Transport of phosphate has been studied in subconfluent monolayers of LLC-PK1 cells. It was found that this transport system shows similar characteristics to those observed in the kidney. Uptake of phosphate is mediated by a Na+-dependent, substrate-saturable process with an apparent Km value for phosphate of 96 ± 15 μmol/1. Kinetic analysis of the effect of Na+ indicated that at (pH 7.4) two sodium ions are cotransported with one HPO42? ion (Hill coefficient 1.5) with an apparent Km value for sodium of 56 mmol/l. Pi uptake is inhibited by metabolic inhibitors (ouabain and FCCP). In the pH range of 6.6 of 7.4 Pi uptake rate does not change significantly, indicating that both the monovalent and the divalent form of phosphate are accepted by the transport system. It is suggested that phosphate is transported by LLC-PKi cells together with sodium (2 Na+ :1 HPO42?) in an electroneutral manner down a favourable sodium gradient.  相似文献   

3.
Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.  相似文献   

4.
Prototroch formation was studied in the polychaete Nereis virens using light, scanning electron, and confocal laser microscopy. Cell lineage of trochoblasts was followed and chronology of their appearance was determined. The prototroch ciliary ring is formed by twelve descendants of micromere 1m 2. The remaining four primary trochoblasts have no cilia and, together with descendants of accessory trochoblasts, become anterior supporting cells of the prototroch. Posterior supporting cells are formed by secondary trochoblasts, which are derived from the second micromere quartet 2m. The results obtained make it possible to analyze one of the ancient programs of animal development.  相似文献   

5.
In Chilopoda, solitary epidermal glands are composed of a couple of cells only. These glands are highly abundant on the entire body surface and are distributed throughout the single-layered epidermis. Some authors provided more or less comprehensive observations on the structure of epidermal glands of specific chilopod taxa. However, no information is hitherto available on the ultrastructural diversity of these glands. Furthermore, potential homologies of these chilopod epidermal glands and of their characteristic cellular components remain unknown. Based on our results, we are now able to distinguish two types of epidermal glands in Chilopoda that can be clearly distinguished by their structure and the course of their conducting canal: recto-canal epidermal glands (rceg) and flexo-canal epidermal glands (fceg). In the present paper, we focus on the rceg. We examined the ultrastructural organization of these glands in the head region and on the anterior trunk segments of various representatives of the five extant chilopod orders by light- and electron-microscopy. According to our terminology, rceg consist of up to five different cell types including: a) distal canal cells, b) proximal canal cells, c) intermediary cells, and d) two different types of secretory cells. Intermediary and canal cells form a common conducting canal. The rceg may taxon-specifically differ in relative size and subcellular architecture, but all have the following features in common: 1) a wide distribution on various body regions among all five chilopod subtaxa, 2) the straight, broad and locally dilated conducting canal surrounded by closely packed microvilli or microvilliform infoldings around the apex of the canal cell(s), and 3) the tendency to aggregate to form compound glandular organs of massive size and complexity. Tricellular glandular units established by three different cell types are observed in Scutigeromorpha and Geophilomorpha, whereas four cell types constitute rceg in Lithobiomorpha and Craterostigmomorpha. Five different cell types per glandular unit are found only in Scolopendromorpha. The partial cuticularization of the lower part of the conducting canal formed by the intermediary cell, as found in Chilopoda, differs from the pattern described for equivalent euarthropod epidermal glands, as for instance in Hexapoda. Their wide distribution in Chilopoda and Progoneata makes it likely that tricellular rceg were at least present in the last common ancestor of the Myriapoda. Concerning Chilopoda, the evolution of highly diverse rceg is well explained on the basis of the Pleurostigmophora concept. Glands of the recto-canal type are also found in other arthropods. The paper discusses cases where homology of rceg and also fceg may be assumed beyond Myriapoda and briefly evaluates the potentials and the still-to-be-solved issues prior to use them as an additional character system to reconstruct the phylogeny of the Euarthropoda.  相似文献   

6.
Active plant metabolites have been used as prototype drugs. In this context, Tabernaemontana catharinensis (Apocynaceae) has been highlighted because of the presence of active indole alkaloids. Thus, this study aims the bio-guided search of T. catharinensis cytotoxic alkaloids. The chemical composition was identified by high-resolution mass spectrometry, and fractionation was performed by open column and preparative thin-layer chromatography, from plant stems. The enriched fractions were tested in vitro in tumour cells A375 (melanoma cell line) and A549 (adenocarcinomic human alveolar basal epithelial cells), and non-tumour Vero cells (African green monkey kidney epithelial cells). The alkaloids identified as active were submitted to in silico toxicity prediction by ADME-Tox and OSIRIS programs and, also, to molecular docking, using topoisomerase I (PDB ID: 1SC7) by iGEMDOCK. As a result, six sub-fractions were obtained, which were identified as containing 16-epi-affinine, 12-methoxy-n-methyl-voachalotine, affinisine, voachalotine, coronaridine hydroxyindoline and ibogamine, respectively. The affinisine-containing sub-fraction showed selective toxicity against A375, with an IC50 of 11.73 µg mL−1, and no cytotoxicity against normal cells (Vero). From the in silico toxicity test results, all indole alkaloid compounds had a low toxicity risk. The molecular docking data provided structural models and binding affinities of the plant’s indole alkaloids and topoisomerase I. In summary, this bio-guided search revealed that the indole alkaloids from T. catharinensis display selective cytotoxicity in A375 tumour cells and toxicity in silico. Particularly, affinisine might be a chemotherapeutic for A375 melanoma cells.  相似文献   

7.
Trypanosoma cruzi causes Chagas disease, a neglected illness that affects millions of people worldwide, especially in Latin America. The balance between biochemical pathways triggered by the parasite and host cells response will ultimately define the progression of a life-threatening disease, justifying the efforts to understand cellular mechanisms for infection restrain. In this interaction, parasite and host cells are affected by different physiological responses as autophagy modulation, which could be under intense cellular stress, such as nutrient deprivation, hormone depletion, or infection. Autophagy is a constitutive pathway that leads to degradation of macromolecules and cellular structures and may induce cell death. In Trypanosoma cruzi infection, the relevance of host autophagy is controversial regarding in vitro parasite intracellular life cycle. In the present study, we evaluated host cell autophagy during T. cruzi infection in phagocytic and non-professional phagocytic cells. We described that the presence of the parasite increased the number of LC3 puncta, a marker for autophagy, in cardiac cells and peritoneal macrophages in vitro. The induction of host autophagy decreased infection in macrophages in early and late time-periods. We suggest that starved phagocytic cells reduced internalization, also confirmed by inert particles and dead trypomastigotes. Whereas, in cardiac cells, starvation-induced autophagy decreased lipid droplets and infection in later time-point, by reducing parasite differentiation/proliferation. In ATG5 knockout MEF cells, we confirmed our hypothesis of autophagy machinery activation during parasite internalization, increasing infection. Our data suggest that host autophagy downregulates T. cruzi infection through impairing parasite intracellular life cycle, reducing the infection in primary culture cells.  相似文献   

8.
Hughes H. P. A. and van Knapen F. 1982. Characteristics of a secretory antigen from Toxoplasma gondii and its role in circulating antigen production. International Journal for Parasitology12: 433–437. In vitro culture of RH Toxoplasma gondii in HEp2 cells was found to yield an antigen, of mol. wt. 324,000 dallons, which is one of the components of circulating antigen (CAg). Hydrophobic interaction electrophoresis of 125I labelled solubilised parasites has shown that this antigen, in common with the other CAg component, is of intracellular origin. Cyclophosphamide had no effect on either parasite proliferation or on secretion of antigen in vitro. Although immune lysis appears to be the major pathway of CAg release in vivo, secretion by the parasite may be important in the expression of CAg in serum and body fluids immediately following infection.  相似文献   

9.
A method is described for using the non-volatile thiocarbamate R-14705 (S-3-methylpyridyl N,N-di-butyl-thiocarbamate) to select for herbicide-tolerant tobacco in cell culture. Properties of two selected cell lines are described. Both lines were stably resistant to R-14705 in the absence of continuous selection, and showed significant cross-resistance to commercial thiocarbamate herbicides. The concept of using analogs to solve problems caused by physical properties of a potential selective agent is discussed.  相似文献   

10.
11.
We previously reported a novel interaction between v-Crk and myosin-1c, and demonstrated that this interaction is essential for cell migration, even in the absence of p130CAS. We here demonstrate a role for Crk-myosin-1c interaction in cell adhesion and spreading. Crk-knockout (Crk‑/‑) mouse embryo fibroblasts (MEFs) exhibited significantly decreased cell spreading and reduced Rac1 activity. A stroboscopic analysis of cell dynamics during cell spreading revealed that the cell-spreading deficiency in Crk‑/‑ MEFs was due to the short protrusion/retraction distances and long persistence times of membrane extensions. The low activity of Rac1 in Crk‑/‑ MEFs, which led to delayed cell spreading in these cells, is consistent with the observed defects in membrane dynamics. Reintroduction of v-Crk into Crk‑/‑ MEFs rescued these defects, restoring cell-spreading activity and membrane dynamics to Crk+/+ MEF levels, and normalizing Rac1 activity. Knockdown of myosin-1c by introduction of small interfering RNA resulted in a delay in cell spreading and reduced Rac1 activity to low levels, suggesting that myosin-1c also plays an essential role in cell adhesion and spreading. In addition, deletion of the v-Crk SH3 domain, which interacts with the myosin-1c tail, led to defects in cell spreading. Overexpression of the GFP-myosin-1c tail domain effectively inhibited the v-Crk-myosin-1c interaction and led to a slight decrease in cell spreading and cell surface area. Collectively, these findings suggest that the v-Crk-myosin-1c interaction, which modulates membrane dynamics by regulating Rac1 activity, is crucial for cell adhesion and spreading.  相似文献   

12.
Goldenser J., Marva E., Spira D. T., Gabrielsen A. A. and Jensen J. B. 1985. Mitogenic and antigenic activity of Plasmodium falciparum in primate and rodent lymphocytes. International Journal for Parasitology15: 435–440. Considerable reaction of human leucocytes to a wide range of concentrations of plasmodial preparations derived from in vitro cultures of Plasmodium falciparum was observed. Highest responses were recorded after 6 days in culture. This differed from the response to PHA or CON-A which peak with a narrow range of concentrations after 3 days in culture. Parasitized erythrocytes (PE) or parasites released from PE as well as soluble antigens obtained from the particulate preparations had a pronounced mitogenic activity which was unaffected by heating to 56°C for 1 h. Peripheral lymphocytes from man and monkey but not from rats reacted to P. falciparum preparations. Spleen cells obtained from normal rats did not react towards any P. falciparum preparation. Spleen cells of rats immune to P. berghei, responded to normal human erythrocytes but the response against P. falciparum antigens was much higher, indicating cross-reactivity with genus specific antigens. The combination of experimental procedures using human peripheral and rat spleen lymphocytes is suggested for differentiation between mitogenic and antigenic activity. Heat inactivation of some proteases present in the plasmodial preparations, while retaining mitogenic activity, may enable further purification of the mitogenic factors.  相似文献   

13.
The normal cellular prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored cell surface glycoprotein. However, in pancreatic ductal adenocarcinoma cell lines, such as BxPC-3, PrP exists as a pro-PrP retaining its glycosylphosphatidylinositol (GPI) peptide signaling sequence. Here, we report the identification of another pancreatic ductal adenocarcinoma cell line, AsPC-1, which expresses a mature GPI-anchored PrP. Comparison of the 24 genes involved in the GPI anchor modification pathway between AsPC-1 and BxPC-3 revealed 15 of the 24 genes, including PGAP1 and PIG-F, were down-regulated in the latter cells. We also identified six missense mutations in DPM2, PIG-C, PIG-N, and PIG-P alongside eight silent mutations. When BxPC-3 cells were fused with Chinese hamster ovary (CHO) cells, which lack endogenous PrP, pro-PrP was successfully converted into mature GPI-anchored PrP. Expression of the individual gene, such as PGAP1, PIG-F, or PIG-C, into BxPC-3 cells does not result in phosphoinositide-specific phospholipase C sensitivity of PrP. However, when PIG-F but not PIG-P is expressed in PGAP1-expressing BxPC-3 cells, PrP on the surface of the cells becomes phosphoinositide-specific phospholipase C-sensitive. Thus, low expression of PIG-F and PGAP1 is the major factor contributing to the accumulation of pro-PrP. More importantly, BxPC-3 cells expressing GPI-anchored PrP migrate much slower than BxPC-3 cells bearing pro-PrP. In addition, GPI-anchored PrP-bearing AsPC-1 cells also migrate slower than pro-PrP bearing BxPC-3 cells, although both cells express filamin A. “Knocking out” PRNP in BxPC-3 cell drastically reduces its migration. Collectively, these results show that multiple gene irregularity in BxPC-3 cells is responsible for the formation of pro-PrP, and binding of pro-PrP to filamin A contributes to enhanced tumor cell motility.  相似文献   

14.
Comparative studies were performed on the replication of the Autographa californica nuclear polyhedrosis virus in cell lines from Estigmene acrea, BTI-EAA; Lymantria dispar, IPLB-LD64BA; Mamestra brassicae, IZD-MB0503; Spodoptera frugiperda, IPLB-SF1254; and Trichoplusia ni, TN-368. Significant differences were observed in the amount of virus obtained from the cell lines, with M. brassicae and T. ni producing more polyhedra than the other lines. These two cell lines also produced nonoccluded virus most rapidly, followed by S. frugiperda, E. acrea, and L. dispar. Sensitivities of the cell lines to infection by the virus, as determined by plaque formation, followed the same pattern, with M. brassicae being most sensitive and L. dispar least so. The T. ni cell line produced polyhedra which were more pathogenic to T. ni larvae than those from the other cells. These differences have important implications in the application of cell cultures in the development of microbial insecticides.  相似文献   

15.
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens.  相似文献   

16.
17.
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.  相似文献   

18.
Cell separation processes, such as abscission, are critical for plant development and play key roles from sculpting the form of the plant to scattering seeds. It is however essential that such processes are under tight temporal and spatial regulation. Floral organ abscission in Arabidopsis thaliana is regulated by a ligand-receptor module consisting of the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA (HAE) and HAESA-LIKE 2 (HSL2), and it is the restricted expression pattern of IDA that hinders cell separation from occurring in the abscission zones (AZs) of other organs where HAE and HSL2 are present. In the July issue of The Plant Cell we report on the identification of additional components acting downstream in the IDA signaling pathway. Through a screen for mutations that restore floral organ abscission in ida mutants, we identified two new alleles of the KNOTTED-LIKE HOMEOBOX gene BREVIPEDICELLUS (BP)/KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1) and show that BP/KNAT1 is important in regulating the timing of floral abscission by controlling AZ cell size and by regulating KNAT2 and KNAT6.  相似文献   

19.
P-glycoprotein (P-gp) is required for adaptive immunity through defined functions in T cell activation and antigen presenting cell (APC) maturation. The potential role of P-gp as an in vivo regulator of alloimmunity is currently unknown. Here we show that P-gp blockade prolongs graft survival in a murine heterotopic cardiac allotransplantation model through in vivo inhibition of the T helper 1 (Th1) cytokine IFN-γ and the Th2 product IL-4, and via downregulation of the APC-expressed positive costimulatory molecule CD80. In vitro, the P-gp antagonist PSC833, a non-calcineurin-inhibitory cyclosporine A analogue, specifically inhibited cellular efflux of the P-gp substrate rhodamine-123 in wild-type CD3+ T cells and MHC class II+ APCs but not their P-gp knockout counterparts that lacked rhodamine-123 efflux capacity. Additionally, P-gp blockade significantly inhibited murine alloimmune T cell activation in a dose-dependent fashion. In vivo, P-gp blockade significantly prolonged graft survival in Balb/c recipients of C57BL/6 cardiac allografts from 8.5 ± 0.5 to 11.7 ± 0.5 days (< 0.01), similar in magnitude to the effects of monotherapy with cyclosporine A. Moreover, P-gp blockade, compared to controls, attenuated intragraft expression of CD3 and CD80, but not CD86, and inhibited IFN-γ and IL-4 production (< 0.05). In the setting of systemic CD86 inhibition, P-gp blockade suppressed IFN-γ and IL-4 production significantly further (to 98% and 89% inhibition, respectively) compared to either P-gp or anti-CD86 blockade alone, and markedly prolonged allograft survival compared to anti-CD86 blockade alone (40.5 ± 4.6 versus 22.5 ± 2.6 days, respectively, < 0.01). Our findings define a novel in vivo regulatory role of P-gp in alloimmunity and identify P-gp as a potential therapeutic target in allotransplantation.  相似文献   

20.
Statistical properties of spontaneous contractions of atrial muscle cells were examined and compared to those of ventricular muscle cells. The cells derived from atria of neonatal rats exhibit spindle morphology, and they were found to express α-smooth muscle actin and hyperpolarization-activated cation channel 4, both of which are known marker of neonatal atrial muscle cells. The short-term properties of spontaneous contractions of atrial cells, characterized by considerably large beat rate and absence of bursts, are distinct from those of ventricular muscle cells. Despite of these differences, the long-term properties of the beat-rate fluctuations exhibit a remarkable similarity to those of ventricular cells. In particular, the presence of power-law correlation characterized as 1/fβ noise (β ≈ 1) was also confirmed for atrial cells for the first time. The observed similarity of the long-term characteristics of beat-rate fluctuation suggests the presence of a general regulatory mechanism of the cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号