首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this research was to study the effect of the substitution of wheat starch by potato starch (PS) on the performance, health and digestion of growing rabbits. Three experimental diets were formulated with 0%, 7% and 14% PS (PS0, PS7 and PS14, respectively) and similar starch contents (22% dry matter basis), proteins and fibre. The three diets were administered to three groups of 48 rabbits from weaning (28 days) to slaughter (70 days), and growth and health measurements were made. Another 10 rabbits per diet (30 rabbits at each age), reared under similar conditions, were slaughtered at 6 to 10 weeks of age, and the digesta were collected to analyse the caecal microbial activity (pH, volatile fatty acids (VFA) levels, fibrolytic activity) and the starch concentration in the ileal digesta. At the same ages, the whole tract digestibility coefficients were measured in 10 other rabbits for each treatment (30 rabbits). The feed intake between 28 and 42 days of age (days) increased by 11% (P < 0.05) in PS0 v. PS14. Over the whole growth period (28 to 70 days), weight gain was similar among diets (40.5 g/day), whereas the feed intake and feed conversion increased (8.5% and 5.2%, respectively; P < 0.05) with the PS14 diet. Mortality and morbidity were not affected by the diets. The starch concentration of the ileal contents increased (P < 0.01) with the addition of PS to the diet (0.39%, 0.77% and 1.08% for diets PS0, PS7 and PS14, respectively). Starch digestibility was 0.8 percentage units higher (99.8% v. 99.0%) with the PS0 diet than the PS14 diet (P = 0.04). The bacterial cellulolytic activity in the caecum tended to be higher with the PS14 diet (P = 0.07). The total VFA caecal concentration increased (P < 0.01) only in 6-week-old rabbits with PS7 compared with PS0 (54.7 v. 74.5 mmol/l). Protein digestibility and ileal starch concentration decreased (P < 0.05) with age (6 v. 10 weeks), and hemicelluloses digestibility increased (P < 0.05). At 10 weeks of age, rabbits showed a higher VFA pool (6.25 mol) and proportion of butyrate (15.9%) and a lower proportion of acetate (79.3%), ammonia level (7.5 mmol/l) and C3/C4 ratio (0.31) than at 6 weeks of age. The intake of potato starch had no effect on the performance, caecal microbial activity or digestive health of growing rabbits.  相似文献   

2.
Corn porous starch: preparation, characterization and adsorption property   总被引:1,自引:0,他引:1  
This study was carried out to develop a new type of modified starch based on α-amylase and glucoamylase. The structural and chemical characteristics of the porous starch were determined by Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The potential application of the porous starch as an adsorbent was evaluated using methyl violet as an adsorbed model. The adsorption capacity was optimized by investigating the reaction factors, including the mass ratio of α-amylase to glucoamylase (mα-amylase/mglucoamylase), the mass ratio of total amount of enzymes to starch (menzyme/mSt), the ratio of liquid volume to starch mass (VH2O/mSt), pH value of the reaction solution, enzymatic reaction temperature, and enzymatic reaction time. The hydrolysis ratio of each sample was also determined to investigate the effect of different reaction conditions on the hydrolysis degree. The results suggest that the porous starch has a more excellent adsorption capacity than the native starch, and may be expected to have wide potential applications in many fields.  相似文献   

3.
In recent years, advances in plant breeding were achieved, which potentially led to modified nutritional values of cereal grains. The present study was conducted in order to obtain a broad overview of ruminal digestion kinetics of rye, triticale and barley grains, and to highlight differences between the grain species. In total, 20 genotypes of each grain species were investigated using in situ and in vitro methods. Samples were ground (2 mm), weighed into polyester bags, and incubated in situ 1 to 48 h in three ruminally cannulated lactating dairy cows. The in vitro gas production of ground samples (1 mm) was measured according to the ‘Hohenheim Gas Test’, and cumulative gas production was recorded over different time spans for up to 72 h. There were significant differences (P<0.05) between the species for most parameters used to describe the in situ degradation of starch (ST) and dry matter (DM). The in situ degradation rate (c) and effective degradability (assuming a passage rate of 8%/h; ED8) of ST differed significantly between all grains and was highest for rye (rye: 116.5%/h and 96.2%; triticale: 85.1%/h and 95.0%; barley: 36.2%/h and 90.0% for c and ED8, respectively). With respect to DM degradation, the ranking of the species was similar, and predicted c values exhibited the highest variation within species. The in vitro gas production rate was significantly higher (P<0.05) for rye than for triticale and barley (rye: 12.5%/h; triticale: 11.5%/h; barley: 11.1%/h). A positive relationship between the potential gas production in vitro and the maximal degradable DM fraction in situ was found using all samples (r=0.84; P<0.001) as well as rye (P=0.002) and barley (P<0.001) alone, but not for triticale. Variation in ruminal in situ degradation parameters within the grain species resulted from the high c values, but was not reflected in the ED estimates. Therefore, the usage of mean values for the ED of DM and ST for each species appears reasonable. Estimated metabolisable energy concentrations (ME, MJ/kg DM) and the estimated digestibility of organic matter (dOM, %) were significantly lower (P<0.05) for barley than for rye and triticale. Rye and triticale dOM and ME values were not significantly different (P=0.386 and 0.485).  相似文献   

4.
Resistant starch (RS) has been suggested to prolong satiety in adult pigs. The present study investigated RS-induced changes in behaviour, satiety-related hormones and metabolites in catheterized growing pigs to explore possible underlying mechanisms for RS-induced satiety. In a cross-over design with two 14-day periods, 10 pigs (initial BW: 58 kg) were assigned to two treatments comprising diets containing either 35% pregelatinized starch (PS) or 34% retrograded starch (RS). Diets were isoenergetic on gross energy. Pigs were fed at 2.8× maintenance. Postprandial plasma response of satiety-related hormones and metabolites was measured at the end of each period using frequent blood sampling. Faecal and urinary energy losses were measured at the end of each period. Behaviour was scored 24 h from video recordings using scan sampling. Energy digestibility and metabolizability were ~6% lower in RS compared with PS diet (P<0.001), and metabolizable energy (ME) intake was ~3% lower in RS-fed than in PS-fed pigs (P<0.001). RS-fed pigs showed less feeder-directed (P=0.001) and drinking (P=0.10) behaviours than PS-fed pigs throughout the day. Postprandial peripheral short-chain fatty acid (SCFA) levels were higher in RS-fed than in PS-fed pigs (P<0.001). Postprandial glucose and insulin responses were lower in RS-fed than in PS-fed pigs (P<0.001). Triglyceride levels were higher in RS-fed than in PS-fed pigs (P<0.01), and non-esterified fatty acid levels did not differ between diets (P=0.90). Glucagon-like peptide-1 (GLP-1) levels were lower in RS-fed than in PS-fed pigs (P<0.001), and peptide tyrosine tyrosine (PYY) levels did not differ between diets (P=0.90). Blood serotonin levels were lower (P<0.001), whereas monoamine oxidase activity (P<0.05) and tryptophan (P<0.01) levels were higher in RS-fed than in PS-fed pigs. Despite a lower ME intake, RS seemed to prolong satiety, based on behavioural observations. Possible underlying mechanisms for RS-induced satiety include increased 24 h plasma SCFA levels, and decreased postprandial glucose and insulin responses. GLP-1 and PYY seemed not to play a role in RS-induced satiety. Low blood serotonin levels in RS-fed pigs suggested a difference in intestinal serotonin release between treatments. Increased postprandial plasma triglyceride levels corresponded with increased SCFA levels, but it is unclear whether triglycerides may have signalled satiety in RS-fed pigs.  相似文献   

5.
The need to improve the knowledge of fermentation processes within the digestive tract in pigs is growing, particularly for ingredients that may act as potential prebiotic sources, such as resistant starch (RS). A study (based on enzymatic digestion followed by in vitro fermentation) was conducted to investigate whether various sources of RS, obtained from eight native starches characterized by inherent heterogeneous starch chemistry and structure, can influence short-chain fatty acid (SCFA) concentrations and relative production kinetics. Total and individual SCFA productions were evaluated over time and up to 72 h of incubation. The in vitro hydrolysis of native starches allowed a classification from very high [⩾650 g/kg dry matter (DM)] to low (<50 g/kg DM) RS amount. The total SCFA production was similar between ingredients, whereas acetate and butyrate molar ratios in the SCFA profile differed (from 0.48 to 0.56 and from 0.17 to 0.25, respectively; P < 0.05). Differences in fermentation kinetic parameters for total and individual SCFA productions were observed (P < 0.05). Considering the total SCFA production after 72 h of incubation, the time at which half of the maximum production has been reached (T1/2), the maximum rate of production (Rmax) and its time of occurrence (Tmax) differed between ingredients (P < 0.05), with values ranging from 6.1 to 11.9 h, from 0.459 to 1.300 mmol/g DM incubated per hour and from 5.1 to 9.8 h, respectively. Overall, a similar trend was observed considering individual SCFA productions. In particular, T1/2 ranged from 6.4 to 12.5 h, from 5.5 to 12.5 h and from 6.7 to 11.3 h for acetate, propionate and butyrate, respectively (P < 0.05). For Rmax, differences were obtained for propionate and butyrate productions (P < 0.05), whereas no difference was recorded for acetate. In summary, our findings indicated that both quantitative and qualitative production of SCFA and related kinetics were influenced by fermentation of RS obtained from native starches characterized by heterogeneous starch characteristics. Current findings are based on an in vitro approach, and thus require further in vivo validations.  相似文献   

6.
The aim of this study was to investigate the applicability of acrylamide grafted moth bean starch as controlled release matrix former. Lamivudine was used as model drug and its controlled release tablets were formulated using various concentration of grafted copolymer. The grafted copolymer was tested for acute toxicity and drug-excipient compatibility study. The formulations were evaluated for physical characteristics like hardness, friability, % drug content and weight variations. The in vitro release study showed that the optimized formulation exhibited highest correlation (R) value in case of Higuchi model and the release mechanism study proved that the formulation showed a combination of diffusion and erosion based release process. There was a significant difference in the pharmacokinetic parameters (Tmax, Cmax, AUC, Vd, T1/2 and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir®, which confirmed controlled release potential of acrylamide grafted copolymer.  相似文献   

7.
The thermotolerant Rhizopus microsporus DMKU 33 capable of producing l-lactic acid from liquefied cassava starch was isolated and characterized for its phylogenetic relationship and growth temperature and pH ranges. The concentrations of (NH4)2SO4, KH2PO4, MgSO4 and ZnSO4·7H2O in the fermentation medium was optimized for lactic acid production from liquefied cassava starch by Rhizopus microsporus DMKU 33 in shake-flasks at 40 °C. The fermentation was then studied in a stirred-tank bioreactor with aeration at 0.75 vvm and agitation at 200 rpm, achieving the highest lactic acid production of 84 g/L with a yield of 0.84 g/g at pH 5.5 in 3 days. Lactic acid production was further increased to 105–118 g/L with a yield of 0.93 g/g and productivity of 1.25 g/L/h in fed-batch fermentation. R. microsporus DMKU 33 is thus advantageous to use in simultaneous saccharification and fermentation for l-lactic acid production from low-cost starchy substrates.  相似文献   

8.
Dietary effects on the host are mediated via modulation of the intestinal mucosal responses. The present study investigated the effect of an enzymatically modified starch (EMS) product on the mucosal expression of genes related to starch digestion, sugar and short-chain fatty acid (SCFA) absorption and incretins in the jejunum and cecum in growing pigs. Moreover, the impact of the EMS on hepatic expression of genes related to glucose and lipid metabolism, and postprandial serum metabolites were assessed. Barrows (n=12/diet; initial BW 29 kg) were individually fed three times daily with free access to a diet containing either EMS or waxy corn starch as control (CON) for 10 days. The enzymatic modification led to twice as many α-1,6-glycosidic bonds (~8%) in the amylopectin fraction in the EMS in comparison with the non-modified native waxy corn starch (4% α-1,6-glycosidic bonds). Linear discriminant analysis revealed distinct clustering of mucosal gene expression for EMS and CON diets in jejunum. Compared with the CON diet, the EMS intake up-regulated jejunal expression of sodium-coupled monocarboxylate transporter (SMCT), glucagon-like peptide-1 (GLP1) and gastric inhibitory polypeptide (GIP) (P<0.05) and intestinal alkaline phosphatase (ALPI) (P=0.08), which may be related to greater luminal SCFA availability, whereas cecal gene expression was unaffected by diet. Hepatic peroxisome proliferator-activated receptor γ (PPARγ) expression tended (P=0.07) to be down-regulated in pigs fed the EMS diet compared with pigs fed the CON diet, which may explain the trend (P=0.08) of 30% decrease in serum triglycerides in pigs fed the EMS diet. Furthermore, pigs fed the EMS diet had a 50% higher (P=0.03) serum urea concentration than pigs fed the CON diet potentially indicating an increased use of glucogenic amino acids for energy acquisition in these pigs. Present findings suggested the jejunum as the target site to influence the intestinal epithelium and altered lipid and carbohydrate metabolism by EMS feeding.  相似文献   

9.
Carboxymethyl starch (CMS) was obtained as a product of the reaction of starch and monochloroacetic acid (MCA) in the presence of sodium hydroxide. The influence of the molar ratio of NaOH/AGU, the molar ratio of MCA/AGU, the reaction time, reaction temperature, and the water content on the degree of substitution (DS) was studied. The optimal molar ratio of NaOH/AGU and MCA/AGU is 2.4 and 1.0, respectively. Increase of the ratio of NaOH/AGU or MCA/AGU leads to an increase in DS, but only to certain extent. The highest values of the DS were obtained when the carboxymethylation was performed at 60 °C for 2.5 h. The water content in the reaction media ethanol was optimal at 20% (v/v). The scanning electron micrographs (SEMs) revealed that the carboxymethylation affected the structural arrangement of the starch and caused granular disintegration. The particle size distribution (PSD) also displayed that the average particle diameter increased greatly after modification from 37.37 μm to 72.88 μm. Wide angle X-ray diffractometry (XRD) revealed that starch crystallinity was obviously reduced after carboxymethylation. The new bands at 1600 cm−1 and 1426 cm−1 in FT-IR indicated that the starch granules were substituted.  相似文献   

10.
11.
The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder rinsing method to reduce particulate loss during rinsing. The modified method markedly reduced the average washout fraction of starch in these products from 0.333 to 0.042 g/g. Applying the modified rinsing method, the fractional degradation rate (k d) of starch in barley, oats and wheat decreased from on average 0.327 to 0.144 h−1 whereas for faba beans, peas and maize no differences in k d were observed compared with the traditional washing machine rinsing. For barley, maize and wheat, the difference in non-fermented starch in the residue between both rinsing methods during the first 4 h of incubation increased, which indicates secondary particle loss. The average effective degradation of starch decreased from 0.761 to 0.572 g/g when using the new rinsing method and to 0.494 g/g when applying a correction for particulate matter loss during incubation. The in vitro k d of starch in the non-washout fraction did not differ from that in the total product. The calculated ratio between the k d of starch in the washout and non-washout fraction was on average 1.59 and varied between 0.96 for oats and 2.39 for maize. The fractional rate of gas production was significantly different between the total product and the non-washout fraction. For all products, except oats, this rate of gas production was larger for the total product compared with the non-washout fraction whereas for oats the opposite was observed. The rate of increase in gas production was, especially for grains, strongly correlated with the in vitro k d of starch. The results of the present study do not support the assumption used in several feed evaluation systems that the degradation of the washout fraction of starch in the rumen is much faster than that of the non-washout fraction.  相似文献   

12.
Calf milk replacers (MR) commonly contain 40% to 50% lactose. For economic reasons, starch is of interest as a lactose replacer. Compared with lactose, starch digestion is generally low in calves. It is, however, unknown which enzyme limits the rate of starch digestion. The objectives were to determine which enzyme limits starch digestion and to assess the maximum capacity for starch digestion in milk-fed calves. A within-animal titration study was performed, where lactose was exchanged stepwise for one of four starch products (SP). The four corn-based SP differed in size and branching, therefore requiring different ratios of starch-degrading enzymes for their complete hydrolysis to glucose: gelatinised starch (α-amylase and (iso)maltase); maltodextrin ((iso)maltase and α-amylase); maltodextrin with α-1,6-branching (isomaltase, maltase and α-amylase) and maltose (maltase). When exceeding the animal’s capacity to enzymatically hydrolyse starch, fermentation occurs, leading to a reduced faecal dry matter (DM) content and pH. Forty calves (13 weeks of age) were assigned to either a lactose control diet or one of four titration strategies (n=8 per treatment), each testing the stepwise exchange of lactose for one SP. Dietary inclusion of each SP was increased weekly by 3% at the expense of lactose and faecal samples were collected from the rectum weekly to determine DM content and pH. The increase in SP inclusion was stopped when faecal DM content dropped below 10.6% (i.e. 75% of the average initial faecal DM content) for 3 consecutive weeks. For control calves, faecal DM content and pH did not change over time. For 87% of the SP-fed calves, faecal DM and pH decreased already at low inclusion levels, and linear regression provided a better fit of the data (faecal DM content or pH v. time) than non-linear regression. For all SP treatments, faecal DM content and pH decreased in time (P<0.001) and slopes for faecal DM content and pH in time differed from CON; P<0.001 for all SP), but did not differ between SP treatments. Faecal DM content of SP-fed calves decreased by 0.57% and faecal pH by 0.32 per week. In conclusion, faecal DM content and pH sensitively respond to incremental inclusion of SP in calf MR, independently of SP characteristics. All SP require maltase to achieve complete hydrolysis to glucose. We therefore suggest that maltase activity limits starch digestion and that fermentation may contribute substantially to total tract starch disappearance in milk-fed calves.  相似文献   

13.
An extracellular glucoamylase [exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] of Endomycopsis fibuligera has been purified and some of its properties studied. It had a very high debranching activity (0.63). The enzyme was completely adsorbed onto raw starch at all the pH values tested (pH 2.0–7.6). Amylase inhibitor from Streptomyces sp. did not prevent the adsorption of glucoamylase onto raw starch although the enzyme did not digest raw starch in the presence of amylase inhibitor. Sodium borate (0.1 m) eluted only 35% of the adsorbed enzyme from raw starch. The optimum pH for raw starch digestion was 4.5 whereas that of boiled soluble starch hydrolysis was 5.5. Waxy starches were more easily digested than non-waxy starches, and root starches were slowly digested by this enzyme.  相似文献   

14.
15.
Aspergillus awamori and Saccharomyces cerevisiae have been used to convert dextrinized cassava root flour into ethanol. A batch culture of the combined microorganisms produced 4.3% alcohol by weight from 15% cassava flour slurry in 39 h. Two-stage continuous fermentation was done using A. awamori in an airlift fermenter and yeast in a tower fermenter. A residence time of 12.5 h for the first stage resulted in 12.5% sugar concentration and a saccharification efficiency of 88%. A residence time of 5.6 h for the second stage gave an alcohol concentration of 5.3% alcohol and a starch-into-ethanol conversion efficiency of 72.5%.  相似文献   

16.
The effect of adding 1–8% amylose complexing fatty acids (CFA), such as linoleic and oleic acids, on the glass transition temperature (Tg) of cassava starch (CS) with moisture content varying from 5 to 35% (dry basis) was studied. The main relaxation temperature (Tα), associated with the glass transition temperature of the samples (Tg), was determined by dynamic-mechanical-thermal analysis. The plasticizing behavior of water in the blends was evidenced by a decrease of Tα values with moisture content. The effect of CFA on CS was found to be a function of moisture content. At low moisture (<11%) it caused an anti-plasticization effect, while at higher moisture contents it produced plasticization. The anti-plasticizing effect of CFA on CS was attributed to amylose–lipid complex formation.  相似文献   

17.
18.
Ruminal in situ incubations are widely used to assess the nutritional value of feedstuffs for ruminants. In in situ methods, feed samples are ruminally incubated in indigestible bags over a predefined timespan and the disappearance of nutrients from the bags is recorded. To describe the degradation of specific nutrients, information on the concentration of feed samples and undegraded feed after in situ incubation (‘bag residues’) is needed. For cereal and pea grains, CP and starch (ST) analyses are of interest. The numerous analyses of residues following ruminal incubation contribute greatly to the substantial investments in labour and money, and faster methods would be beneficial. Therefore, calibrations were developed to estimate CP and ST concentrations in grains and bag residues following in situ incubations by using their near-infrared spectra recorded from 680 to 2500 nm. The samples comprised rye, triticale, barley, wheat, and maize grains (20 genotypes each), and 15 durum wheat and 13 pea grains. In addition, residues after ruminal incubation were included (at least from four samples per species for various incubation times). To establish CP and ST calibrations, 620 and 610 samples (grains and bag residues after incubation, respectively) were chemically analysed for their CP and ST concentration. Calibrations using wavelengths from 1250 to 2450 nm and the first derivative of the spectra produced the best results (R2Validation=0.99 for CP and ST; standard error of prediction=0.47 and 2.10% DM for CP and ST, respectively). Hence, CP and ST concentration in cereal grains and peas and their bag residues could be predicted with high precision by NIRS for use in in situ studies. No differences were found between the effective ruminal degradation calculated from NIRS estimations and those calculated from chemical analyses (P>0.70). Calibrations were also calculated to predict ruminal degradation kinetics of cereal grains from the spectra of ground grains. Estimation of the effective ruminal degradation of CP and ST from the near-infrared spectra of cereal grains showed promising results (R2>0.90), but the database needs to be extended to obtain more stable calibrations for routine use.  相似文献   

19.
Flours and isolated starches from three different cultivars (1544-8, 1658-11 and 1760-8) of pea grown under identical environmental conditions were evaluated for their physicochemical properties and in vitro digestibility. The protein content, total starch content and apparent amylose content of pea flour ranged from 24.4 to 26.3%, 48.8 to 50.2%, and 13.9 to 16.7%, respectively. In pea starches, the 1760-8 showed higher apparent amylose content and total starch content than the other cultivars. Pea starch granules were irregularly shaped, ranging from oval to round with a smooth surface. All pea starches showed C-type X-ray diffraction pattern with relative crystallinity ranging between 23.7 and 24.7%. Pea starch had only a single endothermic transition (12.1-14.2 J/g) in the DSC thermogram, whereas pea flour showed two separate endothermic transitions corresponding to starch gelatinization (4.54-4.71 J/g) and disruption of the amylose-lipid complex (0.36-0.78 J/g). In pea cultivars, the 1760-8 had significantly higher setback and final viscosity than the other cultivars in both pea flour (672 and 1170 cP, respectively) and isolated starch (2901 and 4811 cP). The average branch chain length of pea starches ranged from 20.1 to 20.3. The 1760-8 displayed a larger proportion of short branch chains, DP (degree of polymerization) 6-12 (21.1%), and a smaller proportion of long branch chains, DP ≥ 37 (8.4%). The RDS, SDS and RS contents of pea flour ranged from 23.7 to 24.1%, 11.3 to 12.8%, and 13.2 to 14.8%, respectively. In pea starches, the 1760-8 showed a lower RDS content but higher SDS and RS contents. The expected glycemic index (eGI), based on the hydrolysis index, ranged from 36.9 to 37.7 and 69.8 to 70.7 for pea flour and isolated pea starch, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号