首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effect of 2-hydroxy-3-butynoic acid (HBA) and its methyl ester (MeHBA) on photosynthesis and pigment formation in Zea mays, a C4 photosynthesis-type plant. In the presence of the specific inhibitor of glycollate oxidase, assimilation of CO2 was decreased significantly. Labelling patterns showed accumulation of glycollate, though not so marked as in C3 photosynthesis-type plants, and marked decreases in incorporation into glycine, serine and particularly glycerate. This inhibition was specific for the S(+) enantiomers of HBA and MeHBA. In greening maize R,S-MeHBA inhibited formation of chloroplast pigments and this effect could be shown to be due to the S(+) enantiomer; of a range of metabolises tested only supplementations with serine or pyruvate were partly effective in restoring greening.  相似文献   

2.
The inhibition of greening of illuminated etiolated maize seedlings by isonicotinyl hydrazide can be alleviated by serine or pyruvate. The similar inhibition in barley can be reversed only by pyruvate. In both plants earlier intermediates in the glycollate pathway and other related compounds were ineffective in overcoming the inhibition of greening produced by isonicotinyl hydrazide. In maize seedlings radioactivity from l-serine-[3-14C] is poorly incorporated into β-carotene, a typical chloroplast terpenoid, unless glycine and formate or, more effectively, glycine together with isonicotinyl hydrazide are supplied. These supplementations may minimize interconversion of serine and glycine, and hence dilution of radioactivity at C-3 of l-serine by unlabelled C-1 units, before incorporation into terpenoids. The results support the view that in young greening tissue the C2-3 fragment of l-serine can give rise to acetyl-CoA, an obligatory precursor of chloroplast terpenoids.  相似文献   

3.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   

4.
In greening leaf segments amino-oxyacetate inhibited both chlorophyll and carotenoid formation by ca 60 % at 0.5 mM inhibitor concentration. In greening tissue serine: glyoxylate aminotransferase was the only enzyme of the glycollate pathway whose activity was markedly decreased after inhibitor treatment. The inhibition of pigment formation in barley and maize could be alleviated by glyoxylate, pyruvate and acetaldehyde; in the latter case there is probably a preferential reaction with inhibitor which displaces it from combination with enzymic pyridoxal 5′-phosphate.  相似文献   

5.
1. Micrococcus denitrificans utilized glycollate as sole carbon source for aerobic growth. Glyoxylate was utilized less well, and though glycine alone did not support growth it enhanced growth on glyoxylate. 2. During growth on glycollate, 14C was incorporated from [2-14C]glycollate into glycine and thence into aspartate, malate and glutamate. No phosphoglycerate was labelled at the earliest times. 3. Glyoxylate was the first product of glycollate utilization, and glycollate oxidase was inducibly formed on transfer of the organism to glycollate-containing media. 4. Extracts of glycollate-grown M. denitrificans contained negligible glyoxylate-carboligase activity and only low tartronate semialdehyde-reductase activity. 5. erythro-β-Hydroxyaspartate is a key intermediate in glyoxylate utilization by this organism. Enzymes catalysing (a) the synthesis of erythro-β-hydroxyaspartate from glyoxylate and glycine, and (b) the conversion of erythro-β-hydroxyaspartate into oxaloacetate, were inducibly formed during growth on glycollate and on other substrates yielding glyoxylate. Methods for the assay of these enzymes were developed. 6. It is concluded that in M. denitrificans the biosynthesis of cell materials from glycollate is accomplished by the `β-hydroxyaspartate pathway', a novel metabolic route that may also perform a catabolic role in glyoxylate oxidation.  相似文献   

6.
The occurrence of photorespiration in soybean (Glycine max [L.] Merr.) leaf cells was demonstrated by the presence of an O2-dependent CO2 compensation concentration, a nonlinear time course for photosynthetic 14CO2 uptake at low CO2 and high O2 concentrations, and an O2 stimulation of glycine and serine synthesis which was reversed by high CO2 concentration. The compensation concentration was a linear function of O2 concentration and increased as temperature increased. At atmospheric CO2 concentration, 21% O2 inhibited photosynthesis at 25 C by 27%. Oxygen inhibition of photosynthesis was competitive with respect to CO2 and increased with increasing temperature. The Km (CO2) of photosynthesis was also temperature-dependent, increasing from 12 μm CO2 at 15 C to 38 μm at 35 C. In contrast, the Ki (O2) was similar at all temperatures. Oxygen inhibition of photosynthesis was independent of irradiance except at 10 mm bicarbonate and 100% O2, where inhibition decreased with increasing irradiance up to the point of light saturation of photosynthesis. Concomitant with increasing O2 inhibition of photosynthesis was an increased incorporation of carbon into glycine and serine, intermediates of the photorespiratory pathway, and a decreased incorporation into starch. The effects of CO2 and O2 concentration and temperature on soybean cell photosynthesis and photorespiration provide further evidence that these processes are regulated by the kinetic properties of ribulose-1,5-diphosphate carboxylase with respect to CO2 and O2.  相似文献   

7.
Phosphinothricin (glufosinate), an irreversible inhibitor of glutamine synthetase, causes an inhibition of photosynthesis in C3 (Sinapis alba) and C4 (Zea mays) plants under atmospheric conditions (400 ppm CO2, 21% O2). This photosynthesis inhibition is proceeding slower in C4 leaves. Under non-photorespiratory conditions (1000 ppm CO2, 2% O2) there is no inhibition of photosynthesis. The inhibition of glutamine synthetase by phosphinothricin results in an accumulation of NH4 +. The NH4 +-accumulation is lower in C4 plants than in C3 plants. The inhibition of glutamine synthetase through phosphinothricin in mustard leaves results in a decrease in glutamine, glutamate, aspartate, asparagine, serine, and glycine. In contrast to this, a considerable increase in leucine and valine following phosphinothricin treatment is measured. With the addition of either glutamine, glutamate, aspartate, glycine or serine, photosynthesis inhibition by phosphinothricin can be reduced, although the NH4 +-accumulation is greatly increased. This indicates that NH4 +-accumulation cannot be the primary cause for photosynthesis inhibition by phosphinothricin. The investigations demonstrate the inhibition of transmination of glyoxylate to glycine in photorespiration through the total lack of amino donors. This could result in a glyoxylate accumulation inhibiting ribulose-1,5-bisphosphate-carboxylase and consequently CO2-fixation.Abbreviations GOGAT glutamine-2-oxoglutarate-amidotransferase - GS glutamine synthetase - PPT phosphinothricin - MSO methionine sulfoximine - RuBP ribulose-1,5-bisphosphate  相似文献   

8.
The submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal exhibited different photosynthetic pulse-chase labeling patterns. In Hydrilla, over 50% of the 14C was initially in malate and aspartate, but the fate of the malate depended upon the photorespiratory state of the plant. In low photorespiration Hydrilla, malate label decreased rapidly during an unlabeled chase, whereas labeling of sucrose and starch increased. In contrast, for high photorespiration Hydrilla, malate labeling continued to increase during a 2-hour chase. Thus, malate formation occurs in both photorespiratory states, but reduced photorespiration results when this malate is utilized in the light. Unlike Hydrilla, in low photorespiration Myriophyllum, 14C incorporation was via the Calvin cycle, and less than 10% was in C4 acids.

Ethoxyzolamide, a carbonic anhydrase inhibitor and a repressor of the low photorespiratory state, increased the label in glycolate, glycine, and serine of Myriophyllum. Isonicotinic acid hydrazide increased glycine labeling of low photorespiration Myriophyllum from 14 to 25%, and from 12 to 48% with high photorespiration plants. Similar trends were observed with Hydrilla. Increasing O2 increased the per cent [14C]glycine and the O2 inhibition of photosynthesis in Myriophyllum. In low photorespiration Myriophyllum, glycine labeling and O2 inhibition of photosynthesis were independent of the CO2 level, but in high photorespiration plants the O2 inhibition was competitively decreased by CO2. Thus, in low but not high photorespiration plants, glycine labeling and O2 inhibition appeared to be uncoupled from the external [O2]/[CO2] ratio.

These data indicate that the low photorespiratory states of Hydrilla and Myriophyllum are mediated by different mechanisms, the former being C4-like, while the latter resembles that of low CO2-grown algae. Both may require carbonic anhydrase to enhance the use of inorganic carbon for reducing photorespiration.

  相似文献   

9.
The linked utilization of glycollate and L-serine has been studied in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.). The generation of glycine from glycollate was found to be balanced by the production of hydroxypyruvate from serine and similarly by 2-oxoglutarate when L-glutamate was substituted for L-serine. In the presence of L-malate and catalytic quantities of NAD+, about 40% of the hydroxypyruvate was converted further to glycerate, whereas with substrate quantities of NADH, this conversion was almost quantitative. CO2 was released from the carboxyl groups of both glycollate and serine. Since the decarboxylation of both substrates was greatly in creased by the catalase inhibitor, 3-amino-1,2,4-triazole, and abolished by bovine liver catalase, it was attributed to the nonenzymic attack of H2O2, generated in glycollate oxidation, upon glyoxylate and hydroxypyruvate respectively. At 25–30° C, about 10% of the glyoxylate and hydroxypyruvate accumulated was decarboxylated, and the release of CO2 from each keto-acid was related to the amounts present. It is suggested that hydroxypyruvate decarboxylation might contribute significantly to photorespiration and provide a metabolic route for the complete oxidation of glycollate, the magnitude of this contribution depending upon the concentrations of glyoxylate and hydroxypyruvate in the peroxisomes.  相似文献   

10.
Abstract Carbon fluxes in photosynthesis and photorespiration of water stressed leaves have been analysed in a steady state model based on the ribulose diphosphate carboxylase (RuDP carboxylase) and RuDP oxygenase enzyme activities and the CO2 and O2 concentrations in the leaf. Agreement between predicted and observed photorespiration (Lawlor & Fock, 1975) and C flux in the glycollate pathway is good over much of the range of water stress, but not at severe stress. An alternative source of respiratory CO2 is suggested to explain the discrepancy. The model suggests that resistance to CO2 fixation is mainly in the carboxylation reactions, not in CO2 transport. Using the steady state model, the kinetics of 14C incorporation into photosynthetic and photorespiratory intermediates are simulated. The predicted rate of 14C incorporation is faster than observed and delay terms in the model are used to simulate the slow rates of mixing and metabolic reactions. Inactive pools of glycine and serine are suggested to explain the observed specific activities of glycine and serine. Three models of carbon flux between the glycollate pathway, the photosynthetic carbon reduction cycle and sucrose synthesis are considered. The most satisfactory simulation is for glycollate pathway carbon feeding into the PCR cycle pool of 3-phosphoglyceric acid which provides the carbon for sucrose synthesis. Simulation of the specific activity of CO2 released in photorespiration suggests that a source of unlabelled carbon may contribute to photorespiration.  相似文献   

11.
When division synchronized cultures of Euglena gracilis Klebs (strain Z) were aerated with 5% CO2 in air the specific activity of glycollate dehydrogenase was only 13% of that in cultures receiving unsupplemented air. The concentrations of 10-formyltetrahydrofolate synthetase (EC 6.3.4.3) and formylfolate derivatives were also lowered by this treatment. In contrast, the specific activity of serine hydroxymethyltransferase (EC 2.1.2.1) and the concentration of methylfolates were raised by supplying CO2-supplemented air. These effects on enzyme levels were reversed when air was supplied following a period of CO2 treatment. The levels of glycollate dehydrogenase, 10-formyl-tetrahydrofolate synthetase and formylfolate derivatives were decreased when cells were aerated in media containing 5 mM α-hydroxy-2-pyridinemethane sulphonate. Cell free extracts had the ability to decarboxylate glyoxylate, producing ca equal amounts of CO2 and formate from C-1 and C-2 respectively. Cells receiving 5% CO2 in air had a decreased ability to incorporate formate-[14C] into serine and methionine. It is concluded that during growth at low CO2 concentrations glycollate metabolism will provide substrate for the formyltetrahydrofolate synthetase reaction.  相似文献   

12.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

13.
Snyder FW 《Plant physiology》1974,53(3):514-515
Amount and products of photosynthesis during 10 minutes were measured at different 14CO2 concentrations in air. With tobacco (Nicotiana tabacum L. cv. Maryland Mammoth) leaves the percentage of 14C in glycine plus serine was highest (42%) at 0.005% CO2, and decreased with increasing CO2 concentration to 7% of the total at 1% CO2 in air. However, above 0.03% CO2 the total amount of 14C incorporated into the glycine and serine pool was about constant. At 0.005% or 0.03% CO2 the percentage and amount of 14C in sucrose was small but increased greatly at higher CO2 levels as sucrose accumulated as an end product. Relatively similar data were obtained with sugar beet (Beta vulgaris L. cv. US H20) leaves. The results suggest that photorespiration at high CO2 concentration is not inhibited but that CO2 loss from it becomes less significant.  相似文献   

14.
Isonicotinic acid hydrazide (INH), an inhibitor of the photorespiratory pathway blocking the conversion of glycine to serine and CO2, has been used as a selective agent to obtain INH-resistant tobacco (Nicotiana tabacum) callus cells. Of 22 cell lines that were INH-resistant, none were different from wild-type cells in their ability to take up [3H]INH or to oxidize INH to isonicotinic acid. In 7 of the 22 cell lines, INH resistance was associated with decreased inhibition of NAD-dependent glycine decarboxylation activity in isolated mitochondrial preparations. In the cell line that was most extensively investigated (I 24), this biochemical phenotype (exhibiting a 3-fold higher Ki with INH) was observed in leaf mitochondria of regenerated plants and of plants produced from them by self-fertilization. After crosses between resistant and sensitive plants, the decreased inhibition of glycine decarboxylation was observed among F2 and backcross progeny only in those plants previously identified as INH-resistant by callus growth tests. In contrast, in siblings identified as INH-sensitive, glycine decarboxylation was inhibited by INH at the wild-type level. This demonstration of the transfer of an altered enzyme property from callus to regenerated plants and through seed progeny fulfills an important requirement for the use of somatic cell genetics to produce biochemical mutants of higher plants.  相似文献   

15.
The uptake of (+)-S- and (−)-R-abscisic acid (ABA) by suspension culture cells of hopbush (Dodonaea viscosa L. Jacqu.) was followed over a range of temperatures, pH values, and time intervals. The natural (+)-S-ABA was taken up about five times faster than the unnatural (−)-R-ABA. Each 10°C rise in temperature from 1 to 31°C increased the rate of uptake (Q10) of (+)-S-ABA about 2.2-fold, whereas that of the (−)-R increased with a Q10 of 1.4. (+)-ABA was taken into the cells by a saturable carrier, but (−)-ABA and both enantiomers of 2-trans-ABA were not; they appeared to enter by passive diffusion. The uptake of (+)-ABA was linear over the first 8 hours but concentrations within the cells decreased after 2 hours to remain constant after 4 hours as rapid metabolism was induced. Electron microscopy of thin sections of the cells, combined with a stereological analysis of their shape, showed that the vacuoles comprised 80% of the cell volume and the cytoplasm plus nucleus comprised 20%. There were no photosynthetically active plastids in the cells. Concentrations of the endogenous ABA in the cytoplasm (pH 7.32) and vacuoles (pH 5.88) were calculated by applying the Henderson-Hasselbalch equation (ABA pKa 4.7) so that, provided no active metabolic redistribution occurred, the concentration in the cytoplasm was 7.9 micromolar and that in the vacuole was 0.3 micromolar. In vivo pH was measured by 31P nuclear magnetic resonance spectroscopy.  相似文献   

16.
The activities of enzymes catalysing glycollate oxidation, formate production and folate-dependent formate utilization were examined in the primary leaves of Hordeum vulgare cv Galt. Seedlings were grown for 6 days in darkness and then transferred to continuous light (500 μinsteins/m2 per sec) for up to 5 days. Cell-free extracts of the primary leaves contained glycollate oxidase (EC 1.1.3.1), 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5, 10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) and ability to enzymically decarboxylate glyoxylate. These activities increased during greening and at the end of the light treatment were 70–450% higher than etiolated controls. Greened primary leaves also incorporated [14C]formate at rates that were three- to four-fold higher than shown by etiolated leaves. The specific activity of 10-formyltetrahydrofolate synthetase was decreased by 20–35% when the leaves were greened in the presence of 10 mM hydroxysulphonate. This inhibitor also reduced the incorporation of [14C]formate by up to 45%. A potential flow of carbon from glycollate to 10-formyltetrahydrofolate via glyoxylate and formate was suggested by the data.  相似文献   

17.
Chromate-resistant Chlorella spp. isolated from effluents of electroplating industry could grow in the presence of 30 μM K2Cr2O7. Since photosynthesis is sensitive to oxidative stress, chromate toxicity to photosynthesis was examined in this algal isolate. Chromate [Cr(VI)] up to 100 μM was found to stimulate photosynthesis, while 90% inhibition was found, when the cells were incubated with 1 mM Cr(VI) for 4 h. Photosystem (PS) II was inhibited by 80% and PSI by 40% after such Cr(VI) treatment. Thermoluminescence studies on cells treated with 1 mM Cr(VI) for 4 h showed that S2QA ? recombination peak (Q) was shifted to higher temperature, whereas S2/S3QB ? recombination peak (B) was shifted to lower temperature. These shifts indicated alga stress response in order to overcome an excitation stress resulting from the inhibition of photosynthesis by Cr(VI). The nontreated Chlorella cells kept in the dark showed periodicity of four for the Q peak (4–8°C) and B peak (34–38°C) after exposure to series of single, turnover, saturating flashes. This periodicity was lost in Cr(VI)-treated cells. Higher concentrations of Cr(VI) inhibited mainly the electron flow in the electron transport chain, inactivated oxygen evolving complex, and affected also Calvin cycle enzymes in the Cr(VI)-resistant isolates of Chlorella.  相似文献   

18.
Photosynthetic 14CO2 fixation, [14C]glycolate formation, and the decarboxylation of [1-14C]glycolate and [1-14C]glycine by leaf mesophyll protoplasts isolated from isogenic diploid and tetraploid cultivars of ryegrass (Lolium perenne L.) were examined. The per cent O2 inhibition of photosynthesis in protoplasts from the tetraploid cultivar was less than that of the diploid line at both 21 and 49% O2. Kinetic studies revealed that the Km (CO2) for photosynthesis by the diploid protoplasts was about twice that of the tetraploid line. In contrast, the Ki (O2) for protoplast photosynthesis was similar in both cultivars, as was the potential for oxidizing glycolate and glycine to CO2 via the photorespiratory carbon oxidation cycle. Although the maximal rates of glycolate accumulation by the isolated protoplasts in the presence of 21% O2 and a glycolate oxidase inhibitor were similar in the two cultivars, the percentage of total fixed 14C entering the [14C]glycolate pool and the ratio of the rate of [14C]glycolate formation to 14CO2 fixation at 21% O2 and low pCO2 were about two times greater in protoplasts and intact chloroplasts isolated from the diploid line compared to the tetraploid. These results fully support the recent observation that a doubling of ploidy in various ryegrass cultivars reduced the Km (CO2) of purified ribulose bisphosphate carboxylase-oxygenase by about one-half without affecting the Ki (O2) (Garrett 1978 Nature 274: 913-915).  相似文献   

19.
Supply of 0.01 to 1.0 mM lead acetate to greening pea(Pisum sativum L.) leaf segments either in the absence or in the presence of inorganic nitrogen lowered total chlorophyll (Chl) content. During a time course study, there was not any appreciable effect of Pb2+ upto 4 h but thereafter Pb inhibited Chl synthesis. While supply of succinate, cysteine dithiothreitol, 5,5-dithio-bis-2-nitrobenzoic acid and NH4C1 had no protective action against Pb2+ toxicity, and glycine, glutamate 2-oxoglutarate, MgCl2, KH2PO4, CaCl2, KC1 protected only partially, reduced glutathione (GSH) could completely overcome the inhibition of Chl biosynthesis by the metal. It is suggested that Pb2+ interferes with Chl biosynthesis through GSH availability  相似文献   

20.
Oliver DJ 《Plant physiology》1980,65(5):888-892
Incubating isolated soybean leaf mesophyll cells with glyoxylate increased the rates of CO2 fixation by as much as 150%. In order to cause this stimulation, the glyoxylate must be presented to the cells before the NaHCO3. Significant stimulation was observed 15 seconds after beginning the glyoxylate treatment. The glyoxylate-dependent stimulation was increased by high O2 concentrations and decreased by high CO2 concentrations. Glyoxylate treatment resulted in a 71% inhibition in the rate of CO2 incorporation into glycolate and glycine. Glyoxylate may be stimulating net photosynthesis solely by decreasing photorespiration or it may be increasing the amount of CO2 fixed by both decreasing photorespiration and increasing gross photosynthesis. Ribulose bisphosphate carboxylase, when preactivated and assayed in situ, was unaffected by the glyoxylate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号