首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Lipids from cultured cells, leaves and seeds of two varieties each of soybean (Glycine max) and oil seed rape (Brassica napus) were separated into neutral lipids, glycolipids and phospholipids and their fatty acids were analysed. Usually, the fatty acid composition differed between corresponding fractions from cultured cells, leaves and seeds. Differences were least marked in (i) the phospholipids from cultured cells and leaves of soybean and (ii) the neutral lipids from cultured cells and seeds of rape. In the cultured cells, the fatty acid composition of the phospholipids differed from that of the glycolipids and neutral lipids, and fatty acids of chain length greater than C18 comprised a large proportion of the fatty acids of the glycolipids.  相似文献   

2.
Phospholipid-derived fatty acids (PLFAs) are commonly used to characterize microbial communities in situ and the phylogenetic positions of newly isolated microorganisms. PLFAs are obtained through separation of phospholipids from glycolipids and neutral lipids using silica column chromatography. We evaluated the performance of this separation method for the first time using direct detection of intact polar lipids (IPLs) with high-performance liquid chromatography–mass spectrometry (HPLC-MS). We show that under either standard or modified conditions, the phospholipid fraction contains not only phospholipids but also other lipid classes such as glycolipids, betaine lipids, and sulfoquinovosyldiacylglycerols. Thus, commonly reported PLFA compositions likely are not derived purely from phospholipids and perhaps may not be representative of fatty acids present in living microbes.  相似文献   

3.
The composition and positional distribution of fatty acids in the polar lipids from 4 strains of Chlorella differing in chilling susceptibility and frost hardiness were analyzed by enzymatic hydrolysis and gas-liquid chromatography. Analysis of the polar lipids from chilling-sensitive, chilling-resistant and chilling-sensitive revertant strains of Chlorella ellipsoidea IAM C-102 showed that the sum of palmitic and trans -3-hexadecenoic acid in phosphatidylglycerol (PG) is about 60% for the sensitive strains and 53% for the resistant strain. The sum of dipalmitoyl and 1-palmitoyl-2-( trans -3-hexadecenoyl) PG as estimated from the positional distribution of their fatty acids, is about 10% in the case of each of the three strains. The contents of unsaturated fatty acids in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were higher in the resistant than in the sensitive strain. This suggests that unsaturation of fatty acids in not only PG but also PC and PE is involved in chilling sensitivity of Chlorella . On the other hand, lipid changes during the development of frost hardiness of C. ellipsoidea IAM C-27, a frost hardy strain, were examined. The results showed that fatty acids in most lipid classes are unsaturated in the hardening process but their degree of unsaturation is not greatly different from that of the chilling-resistant strain, suggesting that not only unsaturation of fatty acids in lipids but also other factors are necessary for the development of frost hardiness.  相似文献   

4.
Yoshida S 《Plant physiology》1984,76(1):257-265
The lipid and protein composition of the plasma membrane isolated from mulberry (Morus bombycis Koidz.) bark cells was analyzed throughout the cold acclimation period under natural and controlled environment conditions. There was a significant increase in phospholipids and unsaturation of their fatty acids during cold acclimation. The ratio of sterols to phospholipids decreased with hardiness, primarily due to the large increase in phospholipids. The fluidity of the plasma membrane, as determined by fluorescent polarization technique, increased with hardiness. Electrophoresis of plasma membrane proteins including glycoproteins revealed change in banding pattern during the early fall to winter period. Some of the protein changes could be related to growth cessation and defoliation. However, minor changes in proteins also occurred during the most active period of hardening. Changes in glycoproteins were coincident both with changes in growth stages and with the development of cold hardiness.  相似文献   

5.
The relationship between chilling tolerance of six rice cultivars – Facagro 57, Facagro 76, Fujisaka 5, Kirundo 3, Kirundo 9 and IR64 -and the fatty acid composition in total lipids, phospholipids, galactolipids and neutral lipids from leaves was studied. Higher double bond index and proportions of linolenic acid in the phospholipid and galactolipid classes were related to cultivar chilling tolerance, but this was not so for the total lipids nor the neutral lipid class. The somaclonal families derived from Facagro 76, Kirundo 3 and Kirundo 9 that showed enhanced chilling tolerance as compared to their original parental cultivar were analyzed for fatty acid composition in phospholipids and galactolipids from leaves. Altered proportions in fatty acid composition in phospholipids, galactolipids or both were found in the somaclonal families derived from Facagro 76 and Kirundo 9, but not from Kirundo 3. These changes most usually resulted in higher double bond index and higher proportions in linoleic and linolenic acids which were related either to lower ratio of C16 to C18 fatty acids or to higher unsaturation in the C18 fatty acid fraction. Different mechanisms thus seem to be implicated in the altered fatty acid composition of somaclones, which may be related to the chilling tolerance improvement of some somaclonal families.  相似文献   

6.
The lipid contents of the roots, leaf stalks, leaves and flowers of Eichhornia crassipes (Mart.) Solms (water-hyacinth) were 1.6, 0.9, 14.9 and 5.7%, respectively, on a dry-weight basis. Non-polar lipids were half the total, while glycolipids and phospholipids in approximately equal proportions constituted the remainder, except in leaf stalks, where glycolipids were a larger fraction. Among the non-polar lipids, triacyglycerols predominated, except for pigments in the leaves. Monogalactosyldiglycerides and digalactosyldiglycerides were the major glycolipids. The main phospholipids were phosphatidylcholine in the roots, phosphatidylglycerol in the leaf stalks and leaves, and phosphatidylethanolamine in the flowers. The major fatty acids were palmitic and linoleic in the roots, linoleic in the leaf stalks, palmitic in the leaves, and linolenic and linoleic in the flowers.  相似文献   

7.
Membrane lipids and steady-state CO2 fixation rates were studied in moss protonemata in order to evaluate separately the effects of growth temperature, freezing stress and the achievement of frost hardiness. Protonemata of Ceratodon purpureus (Hedw.) Brid, were grown at 20 and 4°C and parts of both materials were then hardened. The low growth temperature increased the content and unsaturation level of membrane lipids significantly. This did not, however, cause a noticeable increase in the frost hardiness. Nor was the achievement of frost hardiness in this material accompanied by further changes in the amount or unsaturtion level of any membrane lipid class. Cytoplasmic membranes were abundant in both unhardened and hardened materials grown at 4°C, which agreed with the high phospholipid content of these protonemata. The only significant difference in membrane lipids between unhardened and hardened materials was a 50% lower level of trans 16:1 fatty acid in the phosphatidylglycerol fraction of hardened protonemata.
In hardened protonemata monogalactosyldiacylglycerol (MGDG) was the membrane lipid most liable to decrease during the freeze-thaw cycle. The loss of MGDG was accompanied by partial inhibition of CO2 fixation. Provided the content of phospholipids remained unchanged (freeze-thaw cycle with – 10°C in hardened protonemata), this inhibition was mostly reversible. If loss of the phospholipids also had occurred during the freeze-thaw cycle, as was the case in unhardened material at or below -10°C, CO2 fixation was severely and nearly irreversibly inhibited after thawing.  相似文献   

8.
Abstract

The content and composition of lipids and fatty acids of taproots and lateral roots of Vicia faba were investigated with plants grown under saline (80 mM NaCl) and non-saline conditions. Lipids of both types of faba bean roots are constituted of ~80% phospholipids, of ~15% glycolipids and of some 5% of wax-esters. Phosphatidylethanolamine (PE) and phosphatidylcholine are the main constituents of both root types. Di-phosphatyidylglycerol and phosphatidylinositol are present in medium concentrations, whereas phosphatidylglycerol and phosphatidylserine are present only in trace amounts. The content of sulpholipids was much lower in salt-treated roots as compared with that of the controls. The content of cardiolipins and PE was higher in lateral roots than in the taproots. Roots of salt-treated plants had some 18% lower ether-soluble lipid content in the lateral roots, and approximately 28% lower than the taproots. Less than 25% of the fatty acids of the extracted phospholipids were saturated, with palmitic acid as the main constituent (13 – 18%). Linoleic acid comprised 65 – 70% of the unsaturated acids. Differences in the composition of some fatty acids were found between taproots and lateral roots of salt-treated plants. The observed differences in composition between root types suggests that the reported physiological differences between such roots could be based, at least in part, on structural or compositional differences in their lipids.  相似文献   

9.
Growth of a choline requiring auxotroph of Neurospora crassa on medium lacking exogenous choline produces large changes in the levels of phosphatidylethanolamine and phosphatidylcholine. Whole cell fatty acid distributions were found to vary widely between different phospholipid species of normally growing, choline-supplemented cultures with phosphatidylcholine showing the highest levels of unsaturation and anionic phospholipids and cardiolipin having the lowest. In these lipids, choline deprivation produced little change in fatty acid profiles of phosphatidylethanolamine, whereas changes in fatty acids of phosphatidylcholine and acidic phospholipids resulted in increased levels of unsaturation at both growth temperatures. Microsomal phospholipids also showed fatty acid variability with sharp decreases in phosphatidylcholine unsaturates and increases in acidic phospholipid unsaturated fatty acids at low growth temperatures. Fluorescence polarization of 1,6-diphenylhexatriene in vesicles formed from total cellular and microsomal lipids showed that choline deprivation produces changes in thermotropic properties in the lipids in deprived cultures at either growth temperature. The effective differences in fluorescence polarization between choline-deprived and supplemented cultures grown at a given temperature were found to be comparable to those produced by temperature acclimation in normally growing cultures over a temperature range of 22 K.  相似文献   

10.
Prepupae of the Mediterranean arctiid moth Cymbalophora pudica spend hot spring and summer months in a summer diapause (aestivation). Although their cold-hardiness (survival after 1-day exposure to subzero temperatures) is relatively low, it may be moderately enhanced by prior cold acclimation at decreasing above-zero temperatures. In this study, fatty acids of phospholipids and triacylglycerols were analysed in five different tissues (body wall, midgut, fat body, silk glands and brain) dissected from both cold-acclimated and control aestivating prepupae. The five most abundant fatty acids (oleic, palmitic, stearic, linoleic and α-linolenic), found generally in both lipidic fractions and all five tissues, represent a typical fatty complement of Lepidoptera. The fatty acid profiles of individual tissues differed from each other and the response to cold acclimation was also tissue-specific. Moderate but significant increases in the proportion of unsaturated fatty acids after cold acclimation were observed in triacylglycerols of the body wall, fat body and silk glands. Additionally, significant rearrangements of fatty acid profiles were found in triacylglycerols of midgut and brain, without changing the unsaturation/saturation ratio. The adaptational value of enhanced fluidity of fat body triacylglycerols caused by their increased unsaturation remains unclear, because the lipidic energy depots are not utilized during aestivation of this insect. Minimal capacity to alter the membrane-bound fatty acids was found in all tissues except midgut, where the unsaturation/saturation ratio of phospholipids slightly increased after cold acclimation. A low ability to alter the composition of membrane lipids in response to low temperature, correlates well with the low capacity of C. pudica prepupae to enhance their cold-hardiness during cold-acclimation. This may be regarded as indirect support for the membrane lipid restructuring in insect cold adaptation. Accepted: 11 May 1998  相似文献   

11.
To compare the effects of ozone and peroxyacetyl nitrate (PAN) on leaf lipids, fatty acids and malondialdehyde (MDA), morning glory (Pharbitis nil Choisy cv Scarlet O'Hara) and kidney bean (Phaseolus vulgaris L. cv Gintebo) plants were exposed to either ozone (0.15 microliter per liter for 8 hours) or PAN (0.10 microliter per liter for up to 8 hours). Ozone increased phospholipids in morning glory and decreased in kidney bean at the initial stage (2-4 hours) of exposure, while it scarcely changed glycolipids, the unsaturated fatty acids, and MDA in both plants. A large reduction of glycolipids occurred 1 day after ozone exposure in both plants. PAN caused marked drops in phospholipids and glycolipids in kidney bean at relatively late stage (6-8 hours) of exposure, while it increased phosphatidic acid and decreased the unsaturated fatty acids, an increase which was accompanied by a large increase in MDA. These results suggest that ozone may not directly oxidize unsaturated fatty acids at the initial stage of exposure, but may alter polar lipid metabolism, particularly phospholipids. On the other hand, PAN may abruptly and considerably degrade phospholipids and glycolipids by peroxidation or hydrolysis at the late stage of exposure. The present study shows that ozone and PAN affect polar lipids in different manners.  相似文献   

12.
Deyoe DR 《Plant physiology》1979,64(6):924-929
Chloroplast lamellae of eastern white pine (Pinus strobus L.) were analyzed to determine changes in total glycerolipids, component glycerolipids, and glycerolipid fatty acids during the onset of winter hardiness. Samples were collected in September, November, and December when the average daily temperature varied between 23 and −10 C. Before November 2, phospholipids decreased 40 to 85%, glycolipids only 30%. Analysis of individual glycerolipids showed that glycerolipids containing 18:3 fatty acid were retained at the expense of glycerolipids esterified with saturated (16:0 and 18:0) and monounsaturated (18:1) fatty acids.  相似文献   

13.
Wada H  Murata N 《Plant physiology》1990,92(4):1062-1069
Changes in glycerolipid and fatty acid composition with a change in growth temperature were studied in the cyanobacterium, Synechocystis PCC6803. Under isothermal growth conditions, temperature did not significantly affect the composition of the various classes of lipids, but a decrease in temperature altered the degree of unsaturation of C18 acids at the sn-1 position, but not that of C16 acids at the sn-2 position of the glycerol moiety in each class of lipids. When the growth temperature was shifted from 38°C to 22°C, the desaturation of C18 acids, but not that of C16 acids, was stimulated. The desaturation of fatty acids occurred only in the light and was inhibited by chloramphenicol, rifampicin and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, but not by cerulenin, an inhibitor for fatty acid synthesis. These findings suggest that desaturase activities are induced after a shift from a higher to a lower temperature, and that the desaturation of fatty acids is connected with the reactions involved in photosynthetic electron transport.  相似文献   

14.
The effects of NaCl and replacement of K+ by Na+ on the lipid composition of the two sugar beet inbred lines FIA and ADA were studied (a) with increasing additions of NaCl to the basal medium, and (b) with increasing replacement of K+ by Na+ at the same total concentration as in the basal medium. Direct relations were noted between NaCl concentration of the nutrient solution and the phospholipid concentration in the roots of FIA, the genotype characterized by a low K+/Na+ ratio, as well as between NaCl in the medium and the phospholipid concentration in the shoots of ADA, the genotype with a high K +/Na + ratio. The sulfolipid level in the roots of FIA was maintained at higher NaCl concentrations, while it was decreased in ADA. The glycolipid concentration in the shoots of ADA and the degree of unsaturation of the fatty acids of the total lipid fraction were decreased by salinity, indicating reduced biosynthesis of chloroplast glycolipids and/or accelerated oxidation of these lipids in the presence of NaCl.
In the Na+ for K+ replacement experiment a low content of K+ in the medium resulted in decreased levels of total lipids, phospholipids and sulfolipid in the roots of both genotypes, which did not relate to root growth. K+-leakage from the roots at low K+-level in the medium may be reduced by the increase in saturation of the lipids. In the shoots of ADA increased levels of total lipids, phospholipids and Sulfolipid were noted at a low K+-concentration of the nutrient solution.  相似文献   

15.
Most of the nonstarch lipids in brown rice (Oryza sativa) of three rices differing in amylose content were contributed by bran, germ, polish and subaleurone layer. Nonstarch lipids consisted of 82–91% neutral lipids (of which 73–82% were triglycerides), 7–10% phospholipids and 2–8% glycolipids. Linoleic, oleic and palmitic acids were the major fatty acids. Nonwaxy (24 and 29% amylose) milled rice had proportionally more starch lipids and less nonstarch lipids than waxy (2% amylose) milled rice. Starch lipids were mainly lysophosphatidyl choline, lysophosphatidyl ethanolamine and free fatty acids. The major fatty acids were palmitic and linoleic acids, followed by oleic acid.  相似文献   

16.
Fatty acid composition and lipid synthesis in developing safflower seeds   总被引:1,自引:0,他引:1  
Linoleic acid predominated in every lipid class during the whole period of seed development of safflower, while linolenic acid decreased with increasing maturation and it was not detected in mature seeds. Just before the initiation of triacylglycerol accumulation, the fatty acid composition of triacylglycerols changed more rapidly than those of phospholipids and glycolipids. Saturated fatty acids tended to accumulate at the 1- and 3-positions of the glycerol molecule and the more highly unsaturated acids at the 2-position. The fatty acid compositions at the 1- and 3-positions were similar in all cases investigated, but in none of the triacylglycerols was the distribution completely symmetrical. The positional distribution of linolenic acid in triacylglycerols prepared from the immature seeds 2 days after flowering and from the leaves was unusual; in spite of its highest degree of unsaturation, it was preferentially esterified at the 1- and 3-positions. When triacylglycerol was most rapidly accumulated (14–18 days after flowering), the incorporation of acetate-[U- 14C] into total lipids was also maximum and dienoic fatty acids were the principal acids labelled. Diacylglycerols and compound lipids reached the highest rate of synthesis 15 days after flowering, and then a maximum incorporation into triacylglycerol occurred 18 days after flowering. Incubation temperature affected the synthesis of individual lipid classes. Triacylglycerol was more rapidly synthesized at 32° than at 10°, while diacylglycerols and compound lipids were accumulated under the low-temperature condition. A rise of incubation temperature caused a depression in dienoic acid synthesis.  相似文献   

17.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

18.
A. Lopez  J. Burgos 《Phytochemistry》1976,15(6):971-975
Triglycerides, free fatty acids, free and esterified ergosterol, Q9, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, lysophosphatidylethanolamine, and three different acylglycoses were identified in the soluble lipids of Sporendonema epizoum mycelium. The same compounds as well as a sterol glycoside were also found in conidia. The mycelium is richer than the conidia in phospholipids, Q9 and free and esterified ergosterol but contains less glycolipids. The most abundant fatty acid in all non-polar fractions is C18:2. The prevalent fatty acid of the phospholipids is C18:1, except for conidial phosphatidylethanolamine and mycelial lysophosphatidylethanolamine.  相似文献   

19.
The fatty acid composition of phospholipids in thoracic muscles of Pyrrhocoris apterus was related to acclimatization temperature and diapause. Two unsaturated fatty acids, linoleic (18:2n-6) and oleic (18:1n-9), and two saturated, palmitic (16:0) and stearic (18:0), dominated at all temperatures. In contrast to most other reports, the proportion of unsaturated fatty acids did not increase with decreasing temperature; there was a positive correlation between the unsaturation ratio and temperature in total phospholipids (r=0.67). The most prominent response to cold acclimatization was an increase in the proportion of 16:0 fatty acid and a corresponding decrease in the proportion of fatty acids with 18 carbons. The negative correlation between the proportion of 16:0 and temperature was stronger in phospholipids with phosphatidylethanolamine (PE) head group (r=−0.85) than in phospholipids with phosphatidylcholine (PC) head group (r=−0.58). Changes in fatty acid profiles associated with photoperiodic induction of diapause had the same trend as changes related to cold acclimatization. Similar to most other reports, the proportion of PE increased, while the proportion of PC decreased with decreasing temperature. In contrast to a general rule, the PE-phospholipids were less unsaturated than PC-phospholipids.  相似文献   

20.
《Experimental mycology》1981,5(4):349-356
Lipids isolated from chitosomes of the yeast form ofMucor rouxii were analyzed and compared with lipids of whole cells. Chitosomes contained about equal amounts of neutral and polar lipids (55 and 45%, respectively). Sterols and sterol esters constituted the most abundant fraction of neutral lipids. Phosphatidylcholine and phosphatidylethanolamine were the predominant polar lipids. Chitosomes contained no phosphatidylserine, but did contain a significant amount of glycolipids (4% sugarw/w) with galactose as the predominant sugar. Whole yeast cells contained 65% neutral and 35% polar lipids. Fatty acids and phosphoinositides were the most abundant neutral and polar lipids, respectively. Phosphatidylserine was detected among polar lipids, but the amount of glycolipids was below the detection limit. These results are discussed in relation to the role sterols and glycolipids may play in the structure and function of chitosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号