首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a simple quantum mechanical method, we calculated the energy of the highest-occupied molecular orbital (E(HOMO)) of three groups of anti-inflammatory compounds, and we have found correlations between E(HOMO) of these molecules and experimental data previously reported on (1) inhibition of sheep-vesicular-gland prostaglandin cyclooxygenase by phenolic compounds, (2) inhibition of prostaglandin cyclooxygenase in mouse macrophages by salicylates, benzoates and phenols, and (3) peroxyl-radical scavenging and radioprotection of a bacterial virus by NSAID drugs, including metiazinic acid, sulindac, D-penicillamine, piroxicam, indomethacin, benoxaprofen, and aspirin. Our correlations using a systematic evaluation of the HOMO energies can be of predictive value in the search for new anti-inflammatory drugs as well as for new radioprotectors.  相似文献   

2.
Prostaglandins (PGs) have numerous cardiovascular and inflammatory effects. Cyclooxygenase (COX), which exists as COX-1 and COX-2 isoforms, is the first enzyme in the pathway in which arachidonic acid is converted to PGs. Prostaglandin E2 (PGE2) exerts a variety of biological activities for the maintenance of local homeostasis in the body. Elucidation of PGE2 involvement in the signalling molecules such as COX could lead to potential therapeutic interventions. Here, we have investigated the effects of PGE2 on the induction of COX-2 in human umbilical vein endothelial cells (HUVEC) treated with interleukin-1beta (IL-1beta 1 ng/ml). COX activity was measured by the production of 6-keto-PGF1alpha, PGE2, PGF2alpha and thromboxane B2 (TXB2) in the presence of exogenous arachidonic acids (10 microM for 10 min) using enzyme immunoassay (EIA). COX-1 and COX-2 protein was measured by immunoblotting using specific antibody. Untreated HUVEC contained only COX-1 protein while IL-1beta treated HUVEC contained COX-1 and COX-2 protein. PGE2 (3 microM for 24h) did not affect on COX activity and protein in untreated HUVEC. Interestingly, PGE2 (3 microM for 24h) can inhibit COX-2 protein, but not COX-1 protein, expressed in HUVEC treated with IL-1beta. This inhibition was reversed by coincubation with forskolin (100 microM). The increased COX activity in HUVEC treated with IL-1beta was also inhibited by PGE2 (0.03, 0.3 and 3 microM for 24h) in a dose-dependent manner. Similarly, forskolin (10, 50 or 100 microM) can also reverse the inhibition of PGE2 on increased COX activity in IL-1beta treated HUVEC. The results suggested that (i) PGE2 can initiate negative feedback regulation in the induction of COX-2 elicited by IL-1beta in endothelial cells, (ii) the inhibition of PGE2 on COX-2 protein and activity in IL-1beta treated HUVEC is mediated by cAMP and (iii) the therapeutic use of PGE2 in the condition which COX-2 has been involved may have different roles.  相似文献   

3.
A beta-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters (Km and Vmax) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified beta-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion (H3O+), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion (SH+) protonated to the S molecule and the HOMO energy of the H2O2 molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via SN1 and SN2 reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that Km has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.  相似文献   

4.
Cyclooxygenases (COX) are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2) synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA) induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2) synthesis (10 minutes after NMDA), while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA). Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2) synthesis is dependent on P2X7 receptors, extracellular Ca(2+) and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2) synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2) receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2) receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2) production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain injury.  相似文献   

5.
It is known that subepithelial myofibroblast-derived prostaglandin (PG)E2 can regulate intestinal epithelial cell functions, and that proteinase-activated receptor-2 (PAR2) is abundantly expressed in the gastrointestinal tract. Since PAR2 activation has previously been associated with stimulation of PGE2 synthesis, we hypothesized that PAR2 expressed on primary human gastrointestinal myofibroblasts regulates PGE2 synthesis via cyclooxygenase (COX)-1 and (or) COX-2, and associated PGE synthases. Primary human myofibroblasts were isolated from the resection tissue of the esophagus, small intestine, and colon. Expression of functional PAR2 was determined by RT-PCR and by calcium mobilization in Fura-2/AM-loaded cells. Trypsin and the selective PAR2-activating peptide (PAR2-AP) SLIGRL-NH2 stimulated PGE2 synthesis in a concentration-dependent manner, as measured by enzyme immunoassay. Selective COX inhibition showed PAR2-induced PGE2 synthesis to be COX-1 dependent in esophageal myofibroblasts and both COX-1 and COX-2 dependent in colonic cells, consistent with the distribution of COX-1 and COX-2 expression. Although both cytosolic and microsomal PGE synthases were expressed in cells from all tissues, microsomal PGE synthases were expressed at highest levels in the colonic myofibroblasts. Activation of PAR2 on gastrointestinal myofibroblasts stimulates PGE2 synthesis via different pathways in the colon than in the esophagus and small intestine.  相似文献   

6.
Arachidonic acid is converted to prostaglandin E(2) (PGE(2)) by a sequential enzymatic reaction performed by two isoenzyme groups, cyclooxygenases (COX-1 and COX-2) and terminal prostaglandin E synthases (cPGES, mPGES-1, and mPGES-2). mPGES-1 is widely considered to be the final enzyme regulating COX-2-dependent PGE(2) synthesis. These generalizations have been based in most part on experiments utilizing gene expression analyses of cell lines and tumor tissue. To assess the relevance of these generalizations to a native mammalian tissue, we used isolated human and rodent pancreatic islets to examine interleukin (IL)-1β-induced PGE(2) production, because PGE(2) has been shown to mediate IL-1β inhibition of islet function. Rat islets constitutively expressed mRNAs of COX-1, COX-2, cPGES, and mPGES-1. As expected, IL-1β increased mRNA levels for COX-2 and mPGES-1, but not for COX-1 or cPGES. Basal protein levels of COX-1, cPGES, and mPGES-2 were readily detected in whole cell extracts but were not regulated by IL-1β. IL-1β increased protein levels of COX-2, but unexpectedly mPGES-1 protein levels were low and unaffected. In microsomal extracts, mPGES-1 protein was barely detectable in rat islets but clearly present in human islets; however, in neither case did IL-1β increase mPGES-1 protein levels. To further assess the importance of mPGES-1 to IL-1β regulation of an islet physiologic response, glucose-stimulated insulin secretion was examined in isolated islets of WT and mPGES-1-deficient mice. IL-1β inhibited glucose-stimulated insulin secretion equally in both WT and mPGES-1(-/-) islets, indicating that COX-2, not mPGES-1, mediates IL-1β-induced PGE(2) production and subsequent inhibition of insulin secretion.  相似文献   

7.
8.
Cyclooxygenase (COX) is the key enzyme for prostaglandin (PG) synthesis. PGs are mediators of many critical physiological and inflammatory responses. There are two isoforms, COX-1 and COX-2, both of which are constitutively expressed in the central nervous system (CNS). Studies have shown that COX-1 and COX-2 are involved in physiological and pathological conditions of the brain. However, little is known about the role(s) of COX in the host defense system against a viral infection in the CNS. In this report, we used Vesicular Stomatitis Virus (VSV) induced acute encephalitis to distinguish between the contribution(s) of the two isoforms. COX-2 activity was inhibited with a COX-2 selective drug, celecoxib (Celebrex), and COX-1 was antagonized with SC560. We found that inhibition of COX-2 led to decreased viral titers, while COX-1 antagonism did not have the same effect at day 1 post infection. 5-lipooxygenase (5-LO) expression and neutrophil recruitment in the CNS were increased in celecoxib-inhibited mice. Furthermore, mice treated with celecoxib expressed more Nitric Oxide Synthase-1 (NOS-1), a crucial component of the innate immune system in the restriction of VSV propagation. The expression of type 1 cytokines, IFN-gamma and IL-12, were also increased in celecoxib-treated mice.  相似文献   

9.
10.
Cyclooxigenase (COX) is the rate-limiting enzyme for the conversion of arachidonic acid (AA) to prostaglandins (PGs). Two isoforms of COX have been identified: COX-1 is constitutively expressed in many cells and is involved in cell homeostasis, angiogenesis and cell-cell signalling; COX-2 is not expressed in normal condition however it is strongly expressed in inflammation. The oral cavity is constantly exposed to physical and chemical trauma that could lead to mucosal reactions such as hyperplasia, dysplasia and cancer. Early diagnosis is the most important issue to address for a positive outcome of oral cancer; therefore it would be useful to identify molecular markers whose expression is associated with the various stages of oral cancer progression. Since COX enzyme has been involved, with different mechanisms, in the development and progression of malignancies we decided to investigate the expression and localization of COX-1 and COX-2 in normal human oral mucosa and three different pathologies (hyperplasia, dysplasia and carcinoma) by immunohistochemistry and RT-PCR. COX-1 mRNA and protein have been detected already in normal oral mucosa and their expression progressively increases from normal samples towards hyperplasia, dysplasia and finally carcinoma. On the contrary, COX-2 is not expressed in the normal tissue, starts to be expressed in hyperplasia, reaches the maximum activation in dysplasia and then starts to be downregulated in carcinoma.  相似文献   

11.
The cyclooxygenases (COX)-1 and COX-2 are key enzymes in the conversion of arachidonic acid to prostaglandins and other eicosanoids. Whereas COX-1 is expressed ubiquitously, COX-2 is an immediate-early gene often associated with malignant transformation, and a role for the COX enzymes in tumor initiation and promotion is discussed. Nonsteroidal anti-inflammatory drugs (NSAIDs) like aspirin and indomethacin that block COX-1 and -2 have been shown to have beneficial effects for tumor patients. Therefore, these compounds have gained interest also among oncologists. However, the molecular mechanism by which NSAIDs inhibit carcinogenesis is not clearly understood. The prostaglandin-dependent and -independent effect may both account for their antineoplastic action. We show here that tumor cells derived from different tumors regularly produce prostaglandin E(2) (PGE(2)) interfering with the function of monocytes. In particular, PGE(2) inhibits the potential of monocytes to migrate in the direction of a chemotactic stimulus and to adhere to endothelial cell. This inhibition is most probably due to a modulation of the chemokine receptor CCR5 and the beta2-integrin Mac-1. Both down-regulation of CCR5 and reduced expression of Mac-1 may diminish the potential of peripheral blood monocytes to leave blood vessels and invade target tissues. Since both dysfunctions can be restored with NSAIDs, our findings help to explain the molecular chemopreventive action of NSAIDs on tumor formation and progression.  相似文献   

12.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of arthritis and pain. However, their long-term use is limited by gastrointestinal (GI) side effects such as gastric ulcers. NSAIDs act by inhibiting an enzyme called cyclooxygenase. Cyclooxygenase (COX) catalyses the generation of prostaglandins from arachidonic acid. Two isoforms of the enzyme exist--COX-1 and COX-2--both of which are targets for NSAIDs. Although they are associated with GI toxicity, NSAIDs have important antithrombotic and anti-inflammatory effects. The GI injury has been attributed to COX-1 inhibition and the anti-inflammatory effects to COX-2 inhibition. As COX-2 is traditionally viewed as an inducible enzyme, selective inhibition of COX-2 by 'coxibs' (selective COX-2 inhibitors) has been employed to achieve anti-inflammatory and analgesic effects without GI side effects. However, recently there have been suggestions that chronic administration of coxibs might increase the risk of cardiovascular events, such as atherosclerosis, compared with traditional NSAIDs. In vascular disease, there is increased expression of both COX-1 and COX-2, resulting in enhanced prostaglandin generation. The specific role of COX-1 and COX-2 in vascular regulation is still unknown but such knowledge is essential for the effective use of coxibs. Although more evidence is pointing to selective COX-1 inhibition as a therapeutic measure in inflammatory atherosclerosis, there are some studies that suggest that inhibition of COX-2 might have a potential benefit on atherosclerosis.  相似文献   

13.
Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase A2 enzymes, cyclooxygenase (COX) enzymes, and various lineagespecific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived PGH2 specifically to PGE2, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by antiinflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.  相似文献   

14.
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme for prostanoid synthesis, has been implicated in the neurotoxicity resulting from hypoxia-ischemia, and its inhibition has therapeutic potential for ischemic stroke. However, COX-2 inhibitors increase the risk of cardiovascular complications. We therefore sought to identify the downstream effectors of COX-2 neurotoxicity, and found that prostaglandin E(2) EP1 receptors are essential for the neurotoxicity mediated by COX-2-derived prostaglandin E(2). EP1 receptors disrupt Ca(2+) homeostasis by impairing Na(+)-Ca(2+) exchange, a key mechanism by which neurons cope with excess Ca(2+) accumulation after an excitotoxic insult. Thus, EP1 receptors contribute to neurotoxicity by augmenting the Ca(2+) dysregulation underlying excitotoxic neuronal death. Pharmacological inhibition or gene inactivation of EP1 receptors ameliorates brain injury induced by excitotoxicity, oxygen glucose deprivation and middle cerebral artery (MCA) occlusion. An EP1 receptor inhibitor reduces brain injury when administered 6 hours after MCA occlusion, suggesting that EP1 receptor inhibition may be a viable therapeutic option in ischemic stroke.  相似文献   

15.
The mechanism of action of nonsteroidal anti-inflammatory drugs (NSAIDs) is inhibition of specific prostaglandin (PG) synthesis by inhibition of cyclooxygenase (COX) enzymes. The two COX isoenzymes show 60 % similarity. It is known that the nonspecific side effects of conventional NSAIDs are physiologically caused by inhibition of the COX-1 enzyme. Therefore, the use of COX-2 selective inhibitors is seen to be a more beneficial approach in reducing these negative effects. However, some of the existing COX-2 selective inhibitors show cardiovascular side effects. Therefore, studies on the development of new selective COX-2 inhibitors remain necessary. It is important to develop new COX-2 inhibitors in the field of medicinal chemistry. Accordingly, novel N-acyl hydrazone derivatives were synthesized as new COX-2 inhibitors in this study. The hydrazone structure, also known for its COX activity, is important in terms of many biological activities and was preferred as the main structure in the design of these compounds. A methyl sulfonyl pharmacophore was added to the structure in order to increase the affinity for the polar side pocket present in the COX-2 enzyme. It is known that methyl sulfonyl groups are suitable for polar side pockets. The synthesis of the compounds ( 3a – 3j ) was characterized by spectroscopic methods. Evaluation of in vitro COX-1/COX-2 enzyme inhibition was performed by fluorometric method. According to the enzyme inhibition results, the obtained compounds displayed the predicted selectivity for COX-2 enzyme inhibition. Compound 3j showed important COX-2 inhibition with a value of IC50=0.143 uM. Interaction modes between the COX-2 enzyme and compound 3j were investigated by docking studies.  相似文献   

16.
Present generation non-steroidal anti-inflammatory drugs (NSAID) are potent inhibitors of the enzyme cyclooxygenase-2 (COX-2). Even though they exhibit reduced incidence of gastrotoxicity, severe nephrotoxicity and other side effects have been widely reported with respect to usage of these drugs. Since COX-2 levels are not only upregulated by inflammation but also by other stimuli such as cytokines, growth factors, mitogens and steroid hormones, we investigated the localization of COX-2 and activity of both COX-1 and COX-2 in mice testis. To correlate the localization of COX-2 with its function we suppressed COX-2 expression with the aid of nimesulide a preferential COX-2 inhibitor. We found COX-2 was constitutively expressed in the Leydig cells of mice testis suggesting a role on testosterone synthesis. Suppression of COX-2 resulted in increased concentration of most of polyunsaturated fatty acids especially arachidonic acid (AA). Prostaglandin (PG) levels which showed an initial decline during nimesulide treatment had a reversible effect during prolonged treatment. These findings state that cyclooxygenase is constitutively expressed in mice testis and continuous inhibition of COX-2 interferes in maturation of sperm.  相似文献   

17.
Prostaglandin E synthase (PGES), which converts cyclooxygenase (COX)-derived prostaglandin H2 (PGH2) to PGE2, is known to comprise a group of at least three structurally and biologically distinct enzymes. Two of them are membrane-bound and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli and downregulated by anti-inflammatory glucocorticoids as in the case of COX-2. It is functionally coupled with COX-2 in marked preference to COX-1. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate PGE2 production. Recently, mice have been engineered with specific deletions in each of these three PGES enzymes. In this review, we summarize the current understanding of the in vivo roles of PGES enzymes by knockout mouse studies and provide an overview of their biochemical properties.  相似文献   

18.
19.
We have synthesised a series of 2-[[2-alkoxy-6-pentadecylphenyl)methyl]thio]-1H-benzimidazoles/benzothiazoles and benzoxazoles from anacardic acid and investigated their ability to inhibit human cyclooxygenase-2 enzyme (COX-2). The active compounds were screened for cyclooxygenase-1 (COX-1) inhibition. Compound 13 is 384-fold and 19 is more than 470-fold selective towards COX-2 compared to COX-1. Thus, this class of compounds may serve as excellent candidates for selective COX-2 inhibition.  相似文献   

20.
Chicory is a major source of fructans with reported prebiotic-bifidogenic properties. In the present study, the potential anti-inflammatory activities of chicory were investigated. Ethyl acetate chicory root extract produced a marked inhibition of prostaglandin E(2) (PGE(2)) production in human colon carcinoma HT29 cells treated with the pro-inflammatory agent TNF-alpha. Two independent mechanisms of action were identified: (1) a drastic inhibition of the induction by TNF-alpha of cyclooxygenase 2 (COX-2) protein expression and (2) a direct inhibition of COX enzyme activities with a significantly higher selectivity for COX-2 activity. The inhibition of TNF-alpha-dependent induction of COX-2 expression was mediated by an inhibition of NF-kappaB activation. A major sesquiterpene lactone of chicory root, the guaianolide 8-deoxylactucin, was identified as the key inhibitor of COX-2 protein expression present in chicory extract. Altogether, the data presented strongly support chicory root as a promising source of functional food ingredient, combining prebiotic and anti-inflammatory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号