首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
How various macromolecules are exchanged between cells and how they gain entry into recipient cells are fundamental questions in cell biology with important implications e.g. non-viral drug delivery, infectious disease, metabolic disorders, and cancer. The role of heparan sulfate proteoglycan (HSPG) as a cell-surface receptor of diverse macromolecular cargo has recently been manifested. Exosomes, cell penetrating peptides, polycation–nucleic acid complexes, viruses, lipoproteins, growth factors and morphogens among other ligands enter cells through HSPG-mediated endocytosis. Key questions that partially have been unraveled over recent years include the respective roles of HSPG core protein and HS chain structure specificity for macromolecular cargo endocytosis, the down-stream intracellular signaling events involved in HSPG-dependent membrane invagination and vesicle formation, and the biological significance of the HSPG transport pathway. Here, we discuss the intriguing role of HSPGs as a major entry pathway of macromolecules in mammalian cells with emphasis on recent in vitro and in vivo data that provide compelling evidence of HSPG as an autonomous endocytosis receptor.  相似文献   

2.
Heparan sulphate proteoglycans (HSPG's) are cell surface proteins to which long, unbranched chains of modified sugars called heparan sulphate glycosaminoglycans have been covalently attached. Cell culture studies have demonstrated that HSPG's are required for optimal signal transduction by many secreted cell signaling molecules. Now, genetic studies in both Drosophila and vertebrates have illustrated that HSPG's play important roles in signal transduction in vivo and have also begun to reveal new roles for HSPG's in signaling events. In particular, HSPG's have been shown to be important in ligand sequestration of wingless, for the transport of the Hedgehog ligand, and for modulation of the Dpp morphogenetic gradient.  相似文献   

3.
Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system, showing that it provides long-range activity beyond the limit of the developing CNS. Biochemical studies suggest that guidance activity requires cell-surface heparan sulfate to promote binding of mammalian Slit/Robo homologs. Here, we report that the Drosophila homolog of Syndecan (reviewed in ), a heparan sulfate proteoglycan (HSPG), is required for proper Slit signaling. We generated syndecan (sdc) mutations and show that they affect all aspects of Slit activity and cause robo-like phenotypes. sdc interacts genetically with robo and slit, and double mutations cause a synergistic strengthening of the single-mutant phenotypes. The results suggest that Syndecan is a necessary component of Slit/Robo signaling and is required in the Slit target cells.  相似文献   

4.
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.  相似文献   

5.
Heparan sulfate chains have markedly heterogeneous structures in which distinct patterns of sulfation determine the binding specificity for ligand proteins. These "fine structures" of heparan sulfate are mainly produced by the regulated introduction of sulfate groups at the N-, 2-O-, 6-O-, and 3-O-positions of the sugar chain. Recent biochemical, histochemical, and genetic studies have demonstrated that different fine structures mediate distinct molecular recognition events to regulate a variety of cellular functions. In this review, we focus on the molecular basis of growth factor control by the sulfation status of heparan sulfate.  相似文献   

6.
Human skin fibroblasts efficiently internalize the matrikine decorin by receptor-mediated endocytosis, however, very little is known about its intracellular trafficking routes up to lysosomal degradation. In an in vitro system measuring uptake and degradation of [(35)S]sulfate-labeled decorin, endocytosis was blocked by 46% when clathrin assembly/disassembly was inhibited using chlorpromazine. Pharmacological inhibition of EGF receptor signaling caused 34% reduction of decorin uptake, whereas inhibition of the IGF receptor had no effect. Using confocal immunofluorescence microscopy, we determined that only about 5-10% of internalized decorin colocalized with the EGFR. Thus, uptake depends on EGFR signaling rather than trafficking along the same pathway. Decorin passes through early endosomes towards trafficking to lysosomes, since more than 50% of decorin colocalized with EEA1. Moreover, inhibition of endosomal fusion by wortmannin caused a profound inhibition of decorin endocytosis. Overexpression of the clathrin-binding Hrs protein, which has previously been shown to inibit EGFR degradation blocked the degradation of decorin. Cholesterol depletion by filipin inhibited uptake of decorin by 34%, however, nearly no intracellular colocalization was found between decorin and caveolin-1. The combined use of filipin and chlorpromazine had an additive inhibitory effect on decorin endocytosis. Moreover, chlorpromazine diverted decorin from the chlorpromazine-sensitive pathway to an alternative uptake route. The CD44/hyaluronan pathway was excluded as an endocytic route for decorin. Our observations indicate that decorin is taken up by more than one endocytic pathway. Of note, lipid-raft-dependent EGFR signaling modulates decorin uptake, suggesting the presence of a potential feedback regulation mechanism for desensitization of signaling events mediated by decorin.  相似文献   

7.
Heparan sulfate proteoglycan from human and equine glomeruli and tubules   总被引:1,自引:0,他引:1  
1. Proteoglycans were isolated from human and equine glomeruli or tubules by guanidine extraction and anion exchange chromatography. 2. These proteoglycan preparations contained about equal amounts of heparan sulfate and chondroitin sulfates. 3. During the preparation of glomerular or tubular basement membranes the main part of proteoglycans (greater than 50%) was extracted in the salt extract. Chondroitin sulfate proteoglycan was mainly found in the water and salt extracts of glomeruli and tubules, heparan sulfate proteoglycan in the deoxycholate extracts and the basement membranes. 4. The glomerular basement membrane (GBM) contains about 12% (human) or 20% (equine) of the proteoglycans of the total glomerulus. They consist of greater than 70% (equine) or 80% (human) of heparan sulfate. 5. Heparan sulfate proteoglycan was isolated from the proteoglycan preparations of human or equine glomeruli and tubules by additional treatment with nucleases and chondroitinase ABC followed by CsCl gradient centrifugation. 6. Protein accounts for about 40% (dry weight) of the heparan sulfate proteoglycans. Their amino acid composition is characterized by a high content of glycine, but 3-hydroxyproline, 4-hydroxyproline and hydroxylysine are lacking. 7. The biochemical characteristics of the heparan sulfate proteoglycan of human or equine glomeruli or tubules differ from that isolated from rat glomeruli by their higher protein content and their amino acid composition. The significance of these differences is discussed.  相似文献   

8.
The insulin-like growth factor 1 receptor (IGF-1R) is a multifunctional receptor that mediates signals for cell proliferation, differentiation, and survival. Genetic experiments showed that IGF-1R inactivation in skin results in a disrupted epidermis. However, because IGF-1R-null mice die at birth, it is difficult to study the effects of IGF-1R on skin. By using a combined approach of conditional gene ablation and a three-dimensional organotypic model, we demonstrate that IGF-1R-deficient skin cocultures show abnormal maturation and differentiation patterns. Furthermore, IGF-1R-null keratinocytes exhibit accelerated differentiation and decreased proliferation. Investigating the signaling pathway downstream of IGF-1R reveals that insulin receptor substrate 2 (IRS-2) overexpression compensates for the lack of IGF-1R, whereas IRS-1 overexpression does not. We also demonstrate that phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1 and 2 are involved in the regulation of skin keratinocyte differentiation and take some part in mediating the inhibitory signal of IGF-1R on differentiation. In addition, we show that mammalian target of rapamycin plays a specific role in mediating IGF-1R impedance of action on keratinocyte differentiation. In conclusion, these results reveal that IGF-1R plays an inhibitory role in the regulation of skin development and differentiation.  相似文献   

9.
Orexins (OX-A, OX-B) are neuropeptides involved in the regulation of the sleep-wake cycle, feeding and reward, via activation of orexin receptors 1 and 2 (OX1R, OX2R). The loss of orexin peptides or functional OX2R has been shown to cause the sleep disorder, narcolepsy. Since the regulation of orexin receptors remains largely undefined, we searched for novel protein partners of the intracellular tail of orexin receptors. Using a yeast two-hybrid screening strategy in combination with co-immunoprecipitation experiments, we found interactions between OX1R and the dynein light chains Tctex-type 1 and 3 (Dynlt1, Dynlt3). These interactions were mapped to the C-terminal region of the dynein light chains and to specific residues within the last 10 amino acids of OX1R. Hence, we hypothesized that dynein light chains could regulate orexin signaling. In HEK293 cells expressing OX1R, stimulation with OX-A produced a less sustained extracellular signal-regulated kinases 1/2 (ERK1/2) activation when Dynlt1 was co-expressed, while it was prolonged under reduced Dynlt1 expression. The amount of OX1R located at the plasma membrane as well as the kinetics and extent of OX-A-induced internalization of OX1R (disappearance from membrane) were not altered by Dynlt1. However, Dynlt1 reduced the localization of OX1R in early endosomes following initial internalization. Taken together, these data suggest that Dynlt1 modulates orexin signaling by regulating OX1R, namely its intracellular localization following ligand-induced internalization.  相似文献   

10.
The CD44 glycoprotein is expressed in multiple isoforms on a variety of cell types where it functions as a receptor for hyaluronan-mediated motility. Recently, interest has centered on CD44 heparan sulfate proteoglycan (HSPG) isoforms because of their potential to sequester heparin-binding growth factors and chemokines. Expression of these isoforms on ectodermal cells has recently been shown to regulate limb morphogenesis via presentation of fibroblast growth factor (FGF) 4/FGF 8 while expression on tumor cells was shown to sequester hepatocyte growth factor and promote tumor dissemination. To date, however, CD44 HSPG expression in tissue macrophages and lymphocytes has not been adequately investigated, despite the fact these cells actively synthesize growth factors and chemokines and indirect evidence that monocyte CD44 sequesters macrophage inflammatory protein-1beta. Here we show primary human monocytes rather than lymphocytes express CD44 HSPGs, but only following in vitro differentiation to macrophages or activation with the proinflammatory cytokine interleukin-1alpha or bacterial lipopolysaccharide. Furthermore, we show these isoforms are preferentially modified with heparan rather than chondroitin sulfate, bind the macrophage-derived growth factors FGF-2, vascular endothelial growth factor, and heparin-binding epidermal growth factor with varying affinities (K(d) 25-330 nM) and in the case of FGF-2, can stimulate productive binding to the high affinity tyrosine kinase FGF receptor 1 (FGFR1). In contrast, we find no evidence for significant binding to C-C chemokines. Last, we confirm by immunofluorescent antibody staining that inflamed synovial membrane macrophages express CD44 HSPGs and that expression is greatest in cells containing high FGF-2 levels. These results suggest a paracrine role for macrophage CD44 HSPG isoforms in the regulation of growth factor action during inflammation.  相似文献   

11.
Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL-syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3-dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid-releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET.  相似文献   

12.
Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells which belongs to the family of fibroblast growth factor receptors (FGFRs). Following ligand binding, KGFR is rapidly autophosphorylated on specific tyrosine residues in the intracellular domain, recruits substrate proteins, and is rapidly internalized by clathrin-mediated endocytosis. The role of different autophosphorylation sites in FGFRs, and in particular the role of the tyrosine 766 in FGFR1, first identified as PLCgamma binding site, has been extensively studied. We analyzed here the possible role of the tyrosine 769 in KGFR, corresponding to tyrosine 766 in FGFR1, in the regulation of KGFR signal transduction and MAPK activation as well as in the control of the endocytic process of KGFR. A mutant KGFR in which tyrosine 769 was substituted by phenylalanine was generated and transfected in NIH3T3 and HeLa cells. Our results indicate that tyrosine 769 is required for the binding to KGFR and tyrosine phosphorylation of PLCgamma as well as for the full activation of MAPKs and for cell proliferation through the regulation of FRS2 tyrosine phosphorylation, suggesting that this residue represents a key regulator of KGFR signal transduction. Our data also show that tyrosine 769 is not involved in the regulation of the endocytic process of KGFR.  相似文献   

13.
Trypanosoma cruzi activates the kinin pathway through the activity of its major cysteine proteinase, cruzipain. Because kininogen molecules may be displayed on cell surfaces by binding to glycosaminoglycans, we examined whether the ability of cruzipain to release kinins from high molecular weight kininogen (HK) is modulated by heparan sulfate (HS). Kinetic assays show that HS reduces the cysteine proteinase inhibitory activity (K(i app)) of HK about 10-fold. Conversely, the catalytic efficiency of cruzipain on kinin-related synthetic fluorogenic substrates is enhanced up to 6-fold in the presence of HS. Analysis of the HK breakdown products generated by cruzipain indicated that HS changes the pattern of HK cleavage products. Direct measurements of bradykinin demonstrated an up to 35-fold increase in cruzipain-mediated kinin liberation in the presence of HS. Similarly, kinin release by living trypomastigotes increased up to 10-fold in the presence of HS. These studies suggest that the efficiency of T. cruzi to initiate kinin release is potently enhanced by the mutual interactions between cruzipain, HK, and heparan sulfate proteoglycans.  相似文献   

14.
Heparan sulfate is a molecule that possesses a large structural variability and which has been shown to inhibit the proliferation of fibroblasts in vitro. The aim of this study was to determine whether the anti-proliferative effects of heparan sulfate were exerted by regulation of the activity of the platelet-derived growth factor and/or of the platelet-derived growth factor receptors. Both l-iduronate-rich, anti-proliferative and the l-iduronate-poor, non-anti-proliferative heparan sulfate species, were incubated with confluent human embryonic lung fibroblasts for 24 h. The mRNA levels for PDGF-AA, PDGF-BB, and their receptors were measured. Binding studies were performed with [125I]-PDGF-BB and [125I]-EGF for 2 h at 4 degreesC in cultures preincubated with both types of heparan sulfate for 24 h. In separate experiments, cultures were incubated together with heparan sulfate and [125I]-PDGF-BB for 2 h at 4 degreesC. Increases of two- to threefold in the mRNA levels for both the alpha- and the beta-receptors of PDGF was obtained after treatment with both types of heparan sulfate, whereas the mRNA levels of both the PDGF-AA and the PDGF-BB were essentially unaffected. A sixfold increase in binding was only noted for [125I]- PDGF-BB in cultures pre-treated with the anti-proliferative heparan sulfate for 24 h, whereas no effect was noted with use of the non-anti- proliferative heparan sulfate. Incubating the [125I]-PDGF-BB and the anti-proliferative heparan sulfate together for 2 h resulted in a smaller, threefold increase in binding. This indicates that the anti- proliferative heparan sulfate both stabilizes and increases expression of the PDGF receptors. To investigate whether the increased number of PDGF receptors could affect cell activity, cells were preincubated with anti-proliferative heparan sulfate and then treated with PDGF-BB. This resulted in an increase in mitogenicity compared to cells treated only with PDGF-BB. Neither an increase in binding for [125I-EGF] nor an increase in the mitogenic response of EGF could be observed in cultures pre-treated with the anti-proliferative heparan sulfate. The results indicate that the extracellular matrix itself may regulate important biological phenomena such as cell proliferation and matrix production through affecting the expression of receptors of PDGF, which initiate both stimulatory and inhibitory signals.   相似文献   

15.
The regulation of cell function by fibroblast growth factors (FGF) occurs through a dual receptor system consisting of a receptor-tyrosine kinase, FGFR and the glycosaminoglycan heparan sulfate (HS). Mutations of some potential N-glycosylation sites in human fgfr lead to phenotypes characteristic of receptor overactivation. To establish how N-glycosylation may affect FGFR function, soluble- and membrane-bound recombinant receptors corresponding to the extracellular ligand binding domain of FGFR1-IIIc were produced in Chinese Hamster Ovary cells. Both forms of FGFR1-IIIc were observed to be heavily N-glycosylated and migrated on SDS-PAGE as a series of multiple bands between 50 and 75 kDa, whereas the deglycosylated receptors migrated at 32 kDa, corresponding to the expected molecular weight of the polypeptides. Optical biosensor and quartz crystal microbalance-dissipation binding assays show that the removal of the N-glycans from FGFR1-IIIc caused an increase in the binding of the receptor to FGF-2 and to heparin-derived oligosaccharides, a proxy for cellular HS. This effect is mediated by N-glycosylation reducing the association rate constant of the receptor for FGF-2 and heparin oligosaccharides. N-Glycans were analyzed by mass spectrometry, which demonstrates a predominance of bi- and tri-antennary core-fucosylated complex type structures carrying one, two, and/or three sialic acids. Modeling of such glycan structures on the receptor protein suggests that at least some may be strategically positioned to interfere with interactions of the receptor with FGF ligand and/or the HS co-receptor. Thus, the N-glycans of the receptor represent an additional pathway for the regulation of the activity of FGFs.  相似文献   

16.
Chinese hamster ovary (CHO) and human embryonic kidney 293 (HEK293) cells are the most popular host cells for transient gene expression (TGE) of therapeutic proteins. These host cells require high transfection efficiency in order to enhance TGE. Heparan sulfate proteoglycan (HSPG) at the cell surface is known to regulate endocytosis for gene delivery. The HSPG expression in CHO DG44 and HEK293E cells was investigated in an effort to enhance the TGE. Immunostaining of HSPGs followed by confocal microscopy and flow cytometry analyses revealed that CHO DG44 cells possessed a higher amount of cell-surface and intracellular HSPGs than HEK293E cells. The mRNA levels of the representative enzymes involved in the HSPG biosynthesis in CHO DG44, which were determined by quantitative real time PCR, were quite different from those in HEK293E cells. Taken together, the results obtained here would be useful in improving TGE in CHO DG44 and HEK293E cells through genetic engineering of HSPG synthesis.  相似文献   

17.
18.
Summary Fibroblast growth factor-7 (FGF-7) and a specific splice variant of the FGF tyrosine kinase receptor family (FGFR2IIIb) constitute a paracrine signaling system from stroma to epithelium. Different effects of the manipulation of cellular heparan sulfates and heparin on activities of FGF-7 relative to FGF-1 in epithelial cells suggest that pericellular heparan sulfates may regulate the activity of FGF-7 by a different mechanism than other FGFs. In this report, we employ the heparan sulfate-binding protein, protamine sulfate, to reversibly block cellular heparan sulfates. Protamine sulfate, which does not bind significantly to FGF-7 or FGFR2IIIb, inhibited FGF-7 activities, but not those of epidermal growth factor. The inhibition was overcome by increasing the concentrations of FGF-7 or heparin. Heparin was essential for binding of FGF-7 to recombinant FGFR2IIIb expressed in insect cells or FGFR2IIIb purified away from cell products. These results suggest that, similar to other FGF polypeptides, heparan sulfate within the pericellular matrix is required for activity of FGF-7. Differences in response to heparin and alterations in the BULK heparan sulfate content of cells likely reflect FGF-specific differences in the cellular repertoire of multivalent heparan sulfate chains required for assembly and activation of the FGF signal transduction complex.  相似文献   

19.
CD9 is a member of the tetraspanins, and has been shown to be involved in a variety of cellular activities such as migration, proliferation, and adhesion. In addition, it has been known that CD9 can associate with other proteins. Here we demonstrated the physical and functional association of CD9 with epidermal growth factor receptor (EGFR) on MKN-28 cells. Double-immunofluorescent staining and immunoprecipitation demonstrated the complex formation of CD9-EGFR and CD9-beta(1) integrin, and that both complexes are colocalized on the cell surface especially at the cell-cell contact site. Anti-CD9 monoclonal antibody ALB6 induced a dotted or patch-like aggregation pattern of both CD9-EGFR and CD9-beta(1) integrin. The internalization of EGFR after EGF-stimulation was significantly enhanced by the treatment with ALB6. CD9 can associate with EGFR in hepatocellular carcinoma cells (HepG2/CD9) and Chinese hamster ovary cancer cells (CHO-HER/CD9), which were transfected with pTJ/human EGFR/CD9. Furthermore expression of CD9 specifically attenuated EGFR signaling in CHO-HER/CD9 cells through the down regulation of surface expression of EGFR. These results suggest that CD9 might have an important role that attenuates EGFR signaling. Therefore, CD9 not only associates EGFR but also a new regulator, which may affect EGF-induced signaling in cancer cells.  相似文献   

20.
The epidermal growth factor receptor (EGFR) functions in various cellular physiological processes such as proliferation, differentiation, and motility. Although recent studies have reported that EGFR signaling is involved in osteoclast recruitment and formation, the molecular mechanism of EGFR signaling for the regulation of osteoclastogenesis remains unclear. We investigated the role of the EGFR in osteoclast differentiation and survival and show that the expression of the EGFR was highly up-regulated by receptor activator of nuclear factor-kappaB ligand (RANKL) during osteoclast differentiation. EGFR-specific tyrosine kinase inhibitors and EGFR knockdown blocked RANKL-dependent osteoclast formation, suggesting that EGFR signaling plays an important role in osteoclastogenesis. EGFR inhibition impaired the RANKL-mediated activation of osteoclastogenic signaling pathways, including c-Jun N-terminal kinase (JNK), NF-kappaB, and Akt/protein kinase B (PKB). In addition, EGFR inhibition in differentiated osteoclasts caused apoptosis through caspase activation. Inhibition of the phosphoinositide-3 kinase (PI3K)-Akt/PKB pathway and subsequent activation of BAD and caspases-9 and -3 may be responsible for the EGFR inhibition-induced apoptosis. The EGFR physically associated with receptor activator of nuclear factor-kappaB (RANK) and Grb2-associated binder 2 (Gab2). Moreover, RANKL transactivated EGFR. These data indicate that EGFR regulates RANKL-activated signaling pathways by cross-talking with RANK, suggesting that the EGFR may play a crucial role as a RANK downstream signal and/or a novel type of RANK co-receptor in osteoclast differentiation and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号