首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
There are two important allocation hypotheses in plant biomass allocation: allometric and isometric. We tested these two hypotheses in an alpine steppe using plant biomass allocation under nitrogen (N) addition and precipitation (Precip) changes at a community level. An in situ field manipulation experiment was conducted to examine the two hypotheses and the responses of the biomass to N addition (10 g N m?2 y?1) and altered Precip (±50% precipitation) in an alpine steppe on the Qinghai–Tibetan Plateau from 2013 to 2016. We found that the plant community biomass differed in its response to N addition and reduced Precip such that N addition significantly increased aboveground biomass (AGB), while reduced Precip significantly decreased AGB from 2014 to 2016. Moreover, reduced Precip enhanced deep soil belowground biomass (BGB). In the natural alpine steppe, the allocation between AGB and BGB was consistent with the isometric hypotheses. In contrast, N addition or altered Precip enhanced biomass allocation to aboveground, thus leading to allometric growth. More importantly, reduced Precip enhanced biomass allocation into deep soil. Our study provides insight into the responses of alpine steppes to global climate change by linking AGB and BGB allocation.  相似文献   

2.
近年来, 在人类活动和气候变化的影响下, 物种多样性丧失趋势不断加剧, 对生态系统功能带来严重后果。目前, 关于生态系统功能的研究, 忽略了土壤和微生物碳氮养分循环过程对地上生态系统功能(AEF)的重要驱动作用, 而土壤碳氮要素和微生物的任何变化都有可能改变地下群落对生态系统功能的维持作用。该研究旨在探究高寒草地AEF的主要控制因子, 以及其关键要素对AEF的作用机理。2015年7-8月, 对青藏高原地区115个样点进行了草地群落和土壤属性等要素样带调查; 综合植物地上生物量, 叶片碳、氮和磷含量等参数计算AEF值, 分析地下土壤有机碳含量、全氮含量、生物量等关键要素对AEF值的影响。结合取样点年降水量和年平均气温, 深入探讨影响AEF的主要控制因子和作用机理。结果表明降水对AEF有较大影响, 而气温影响相对较低。年降水量、土壤微生物生物量碳含量和干旱指数对AEF值的相对重要性贡献较高(重要值分别为21.1%、10.9%和10.1%), 控制青藏高原高寒草地AEF值的关键是土壤因子。在气候因子对土壤养分和微生物的作用下, 土壤微生物生物量氮含量在调控高寒草地AEF值方面发挥重要作用。  相似文献   

3.
在全球气候变化背景下,降水变化对植物群落动态将产生深远的影响。以黄土高原西部荒漠草原为对象,通过野外降水控制试验,研究不同生活型植物丰富度、密度、盖度、高度和地上生物量对降水变化的响应。结果表明: 降水处理对一年生草本植物的丰富度、密度、盖度的影响在降水试验第3年(2015年)达到显著水平,以减水处理最低,植物高度对降水变化的响应更敏感,3年间,均以减水40%处理最低;植物生长和地上生物量对减水处理的负响应幅度大于对增水处理的响应。多年生草本植物的丰富度、密度和盖度在第3年以减水处理显著低于增水40%处理,但与对照无显著差异;植物高度3年间均以减水40%处理最低;丰富度、盖度、高度对减水处理的负响应幅度大于对增水处理的正响应,但地上生物量对增水40%处理的正响应较强。灌木的丰富度、密度、盖度和地上生物量对增减水20%处理的正响应最明显,可能与灌木在该处理分布相对集中有关。降水减少抑制了草本植物的生长,但对一年生草本植物的抑制作用更强,降水增加在一定程度上促进了多年生草本植物的生长和生物量积累。一年生草本植物的生长和生物量随降水年际变异波动明显,灌木受降水改变的影响相对较小,降水变化对黄土高原西部荒漠草原植物群落组成与功能将产生显著的影响。  相似文献   

4.
青藏高原正经历着明显的温暖化过程, 由此引起的土壤温度的升高促进了土壤中微生物的活性, 同时青藏高原东缘地区大气氮沉降十分明显, 并呈逐年增加的趋势, 这些环境变化均促使土壤中可利用营养元素增加, 因此深入了解青藏高原高寒草甸植物生物量对可利用营养元素增加的响应, 是准确预测未来全球变化背景下青藏高原高寒草甸碳循环过程的重要基础。该研究基于在青藏高原高寒草甸连续4年(2009-2012年)氮、磷添加后对不同功能群植物地上生物量、群落地上和地下生物量的测定, 探讨高寒草甸生态系统碳输入对氮、磷添加的响应。结果表明: (1)氮、磷添加均极显著增加了禾草的地上绝对生物量及其在群落总生物量中所占的比例, 同时均显著降低了杂类草在群落总生物量中的比例, 此外磷添加极显著降低了莎草地上绝对生物量及其在群落总生物量中所占的比例。(2)氮、磷添加均显著促进了青藏高原高寒草甸的地上生物量增加, 分别增加了24%和52%。(3)氮添加对高寒草甸地下生物量无显著影响, 而磷添加后地下生物量有增加的趋势。(4)氮添加对高寒草甸植物总生物量无显著影响, 而磷添加后植物总生物量显著增加。研究表明, 氮、磷添加可缓解青藏高原高寒草甸植物生长的营养限制, 促进植物地上部分的生长, 然而高寒草甸植物的生长极有可能更受土壤中可利用磷含量的限制。  相似文献   

5.
Nitrogen (N) is one of the most important factors limiting plant productivity, and N fixation by legume species is an important source of N input into ecosystems. Meanwhile, N resorption from senescent plant tissues conserves nutrients taken up in the current season, which may alleviate ecosystem N limitation. N fixation was assessed by the 15N dilution technique in four types of alpine grasslands along the precipitation and soil nutrient gradients. The N resorption efficiency (NRE) was also measured in these alpine grasslands. The aboveground biomass in the alpine meadow was 4–6 times higher than in the alpine meadow steppe, alpine steppe, and alpine desert steppe. However, the proportion of legume species to community biomass in the alpine steppe and the alpine desert steppe was significantly higher than the proportion in the alpine meadow. N fixation by the legume plants in the alpine meadow was 0.236 g N/m2, which was significantly higher than N fixation in other alpine grasslands (0.041 to 0.089 g N/m2). The NRE in the alpine meadows was lower than in the other three alpine grasslands. Both the aboveground biomass and N fixation of the legume plants showed decreasing trends with the decline of precipitation and soil N gradients from east to west, while the NRE of alpine plants showed increasing trends along the gradients, which indicates that alpine plants enhance the NRE to adapt to the increasing droughts and nutrient‐poor environments. The opposite trends of N fixation and NRE along the precipitation and soil nutrient gradients indicate that alpine plants adapt to precipitation and soil nutrient limitation by promoting NRE (conservative nutrient use by alpine plants) rather than biological N fixation (open sources by legume plants) on the north Tibetan Plateau.  相似文献   

6.
Although belowground biomass (BGB) plays an important role in global cycling, the storage of BGB and climatic effects on it are remaining unclear. With data from 49 sites, we aimed to investigate BGB and its climatic controls in alpine shrublands in the Tibetan Plateau. Our study showed that the BGB (both grass‐layer and shrub‐layer biomass) storage in the alpine shrublands was 67.24 Tg, and the mean BGB density and shrublands area were 1,567.38 g/m2 and 4.29 × 104 km2, respectively. Shrub layer had a larger BGB stock and accounted for 66% of total BGB this area, while only 34% was accumulated in the grass layer. BGB of the grass layer in the Tibetan Plateau shrublands was larger than that of Tibetan alpine grasslands, indicating that shrubland ecosystem played a critical importance role in carbon cycle on the Tibetan Plateau. The BGB in the grass layer and shrub layer demonstrated different correlations with climatic factors. Specifically, the effects from mean annual temperature on shrub‐layer BGB were not significant, similarly to the relationship between mean annual precipitation and grass‐layer BGB. But shrub‐layer BGB had a significantly positive relationship with mean annual precipitation (p < .05), while grass‐layer BGB showed a trend of decrease with increasing mean annual temperature (p < .05). Consequently, the actual and potential increases of BGB varied due to different increases of mean annual precipitation and temperature among different areas of the Tibetan Plateau. Therefore, in the warmer and wetter scenario, due to contrary relationships from mean annual precipitation and temperature on shrub‐layer BGB and grass‐layer BGB, it is necessary to conduct a long‐term monitoring about dynamic changes to increase the precision of assessment of BGB carbon sequestration in the Tibetan Plateau alpine shrublands.  相似文献   

7.
宗宁  石培礼 《生态学报》2020,40(12):4000-4010
大气氮沉降增加被认为是目前重要的环境问题,会引起生物多样性的丧失和生态系统稳定性的降低。但作为草地改良的管理措施,养分添加被广泛应用于退化草地的恢复。但由于不同类型草地所处气候与群落组成的差异,对氮输入的响应可能不同。通过在藏北高原高寒草甸与高寒草甸草原设定长期氮添加梯度试验(对照, 25, 50, 100, 200 kg N hm~(-2) a~(-1)),来探讨氮输入对生物多样性与生产的影响,并估算不同类型高寒草地的氮饱和阈值。施氮对高寒草甸物种多样性指数无影响,而随着施氮量的提高高寒草甸草原植物物种数和多样性指数均逐渐降低。开始施肥前两年,随着施氮量提高高寒草甸地上生物量呈现逐渐增加趋势,随着施肥时间的延长地上生物量呈现先增加后降低的趋势。在高寒草甸草原随着施氮量提高地上生物量均呈现先增加后降低的趋势。随着施氮量提高,开始施氮前三年高寒草甸禾草植物地上生物量逐渐提高;随着施氮时间的延长,禾草和豆科植物地上生物量呈现先增加后降低的趋势。高寒草甸莎草植物地上生物量由施氮开始时的逐渐增加转变为先增加后降低趋势,最后变为逐渐降低的趋势,这说明施氮不利于莎草植物的生长。施氮只在施肥第四年显著提高杂草植物地上生物量。高寒草甸草原呈现不同的规律,开始施氮前三年随着施氮量提高,禾草植物地上生物量呈现先增加后降低的趋势;随着施氮时间的延长,禾草地上生物量逐渐提高。莎草和杂草植物地上生物量呈现先增加后降低趋势。利用对氮输入响应最敏感的植物功能群禾草生物量估算的高寒草甸和高寒草甸草原的氮饱和阈值分别是109.5、125.8 kg N hm~(-2) a~(-1),这说明高寒草甸氮敏感性显著高于高寒草甸草原。由此可见,未来氮沉降增加会对不同类型高寒草地产生不同的影响,在不同类型高寒草地进行施肥恢复时也应将氮饱和阈值的差异考虑在内。  相似文献   

8.
受全球气候变化的影响,青藏高原在过去的几十年间整体上呈现暖湿化的趋势,相比于年际之间温度和降水的变化外,生长季和非生长季气候变化模式的差异可能会对生态系统产生更重要的影响,但相关的研究尚不充分。以青藏高原东部的高寒草甸为研究对象,基于2001年至2017年17年的野外观测数据,包括优势植物紫花针茅的高度、多度以及生物量、次优势物种洽草的生物量,结合生长季和非生长季平均温度和降水量的变化,通过线性回归以及结构方程模型,探究生长季/非生长季不对称气候变化对于青藏高原高寒草甸优势物种生物量稳定性的影响。研究结果表明:1)青藏高原东部年均温和年降水在过去的17年间显著增加,呈现暖湿化的趋势,但是非生长的降水却变化不明显;2)紫花针茅的高度、多度以及生物量在过去17年没有显著的趋势,但是洽草的生物量稳定性显著减少;3)非生长降水结合紫花针茅的高度、多度以及洽草的生物量稳定性促进了紫花针茅的生物量稳定性。研究结果可以为青藏高原高寒草甸在未来气候变化的背景下合理保护与利用提供科学依据。  相似文献   

9.
Understanding the plant–pest interaction under warming with grazing conditions is critical to predict the response of alpine meadow to future climate change. We investigated the effects of experimental warming and grazing on the interaction between plants and the grassland caterpillar Gynaephora menyuanensis in an alpine meadow on the Tibetan Plateau in 2010 and 2011. Our results showed that grazing significantly increased nitrogen concentration in graminoids and sward openness with a lower sward height, sward coverage, and plant litter mass in the community. Grazing significantly increased G. menyuanensis body size and potential fecundity in 2010. The increases in female body size were about twofold greater than in males. In addition, grazing significantly increased G. menyuanensis density and its negative effects on aboveground biomass and graminoid coverage in 2011. We found that G. menyuanensis body size was significantly positively correlated with nitrogen concentration in graminoids but negatively correlated with plant litter mass. Even though warming did not significantly increased G. menyuanensis performance and the negative effects of G. menyuanensis on alpine meadow, the increases in G. menyuanensis growth rate and its negative effect on aboveground biomass under the warming with grazing treatment were significantly higher than those under the no warming with grazing treatment. The positive effects of grazing on G. menyuanensis performance and its damage were exacerbated by the warming treatment. Our results suggest that the fitness of G. menyuanensis would increase under future warming with grazing conditions, thereby posing a greater risk to alpine meadow and livestock production.  相似文献   

10.
《植物生态学报》2018,42(8):818
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   

11.
荒漠草原植物群落结构及其稳定性对增水和增氮的响应   总被引:1,自引:0,他引:1  
杜忠毓  安慧  文志林  王波  张馨文 《生态学报》2021,41(6):2359-2371
通过在荒漠草原开展增水和增氮野外控制试验,研究增水和增氮对荒漠草原植物群落结构、物种多样性及群落稳定性的影响。结果表明:(1)增水和增氮处理显著影响了荒漠草原植物群落结构和地上生物量,而对植物群落稳定性影响不显著(P>0.05)。增水处理显著增加了豆科和禾本科植物地上生物量(101.3%和57.9%)(P<0.05);增水+增氮处理显著增加了植物群落盖度(43.2%)和地上生物量(112.4%)及不同功能群(禾本科和杂类草)植物盖度(75.5%和47.3%)和地上生物量(139.3%和85.7%)(P<0.05)。与增氮处理相比,增水+增氮处理显著增加了植物群落和不同功能群(禾本科和杂类草)植物高度、盖度和地上生物量(P<0.05)。(2)增水、增氮和增水+增氮处理均显著降低了植物群落Pielou指数(11.7%、8.7%和10.2%)(P<0.05)。(3)增水和增水+增氮处理提高了荒漠草原植物群落稳定性,而增氮处理降低了荒漠草原植物群落稳定性。增水处理荒漠草原植物群落稳定性效应大于增水+增氮处理。研究表明,荒漠草原植物群落结构受到氮沉降和降水增加的共同影响。增加降水对荒漠草原植物群落稳定性的积极效应可能会抵消部分氮沉降的消极影响,荒漠草原植物群落地上生物量及群落稳定性可能有所增加。  相似文献   

12.
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   

13.

Aims

We evaluated the effects of temperature and addition of leaf litter of Androsace tapete MaximWe–a dominant cushion plant species of alpine meadows on the Tibetan Plateau–on carbon (C) and nitrogen (N) mineralization, microbial biomass C (MBC) and N (MBN).

Methods

A laboratory incubation experiment with and without cushion plant litter addition was conducted for 112 days at three temperature regimes (?1, 5 and 11 °C). C and net N mineralization were simultaneously measured during the incubation period.

Results

C and N mineralization were affected by interactions between litter addition and temperature. Litter addition increased C mineralization and MBN but shifted N mineralization to immobilization at higher temperature. The positive relationship between net N mineralization and MBC and MBN was shifted to a negative one through cushion plant litter addition. Cushion plant litter also changed the relationship between C mineralization and net N mineralization from insignificantly positive to significantly negative.

Conclusions

These findings indicate that low temperature in winter could be important for alpine plants because low temperature can increase net N mineralization and supply plants with available N for their growth in the early growing season. During the growing season, climate warming–either directly through a temperature effect or indirectly through triggering increased cushion plant litter production–might lead to stronger competition for N between alpine plants and microorganisms.  相似文献   

14.
氮水添加对高寒草甸生态系统生产力的影响 降水变化和大气氮沉降增加对草原生态系统碳交换具有重要的影响,进而影响草地生产力、群落组成和生态系统功能。然而,氮水添加对高寒草甸生态系统碳交换的影响目前尚不清楚。因此,本研究在青藏高原高寒草甸布设氮水添加试验,设置4种不同处理:对照、 加氮、加水和同时添加氮水,对生态系统碳交换过程进行了连续4年的原位观测。研究结果发现,氮添加可以增加总生态系统生产力(GEP)、植物地上生物量、群落盖度和群落加权平均高度(CWMh),而水分添加没有显著影响。生态系统碳交换对氮水添加的响应在干湿年存在显著差异。水分添加仅在干旱年对净生态系统碳交换(NEE)具有显著影响,原因是GEP的增加量大于生态系统呼吸(ER)。相反,氮添加仅在湿润年显著提高了生态系统碳交换,其中GEP的增加归因于NEE的增加量大于ER。结构方程结果表明,氮添加主要通过增加优势种的盖度从而提高NEE。本研究强调了降水和优势物种在调节高寒草甸生态系统响应环境变化中的重要作用。  相似文献   

15.
垂穗披碱草(Elymus nutans)是高寒地区建植和改良栽培草地的首选草种。虽然合理植株密度和氮素添加量是垂穗披碱草栽培草地稳产的关键因子,但两者之间是否存在最佳互作组合仍不清楚。采用盆栽试验,通过分析不同植株密度(58、102、146株/m2)和氮素添加量(0、200、400 mg/kg)组合状态下垂穗披碱草株高、单株分蘖数、地上生物量、地下生物量、根系体积和地上地下生物量比,以确定理论上是否存在植株密度和氮素添加量的最佳组合。结果表明:随植株密度增加,垂穗披碱草株高、地上生物量和地上地下生物量比值均先增加后降低,而单株分蘖数逐渐减小,根系体积和地下生物量先增加后保持相对稳定;随氮素添加量增加,垂穗披碱草单株分蘖数、地上生物量和地上地下生物量比值均表现为先增加后降低,地下生物量逐渐降低。植株密度与氮素添加量互作虽然对垂穗披碱草的根系体积和单株分蘖数没有显著影响,但两者互作显著影响了垂穗披碱草株高、地上生物量、地下生物量、地上地下生物量比(P<0.01),这些指标与植株密度和氮素添加量的关系均表现为一个开口向下的抛物面。当植株密度为102株/m2和氮素添加量为200 mg/kg时,垂穗披碱草栽培草地产量最大,生物量分配最优。垂穗披碱草植株密度和氮素添加互作时理论上存在最佳组合,这为垂穗披碱草栽培草地的田间管理提供了理论依据。  相似文献   

16.

Background and aims

Few studies have investigated the effect of nitrogen (N) fertilizer on ecosystem respiration (Re) under mixed legume and grass pastures sown at different seeding ratios,and data are almost entirely lacking for alpine meadow of the Tibetan Plateau. Our aim was to test the hypothesis that although a combination of legumes with grass and N fertilizer increases Re the combination decreases Re intensity (i.e. Re per unit of aboveground biomass) due to greater increases in aboveground biomass compared to increases in Re.

Methods

This hypothesis was tested using different seeding ratios of common vetch (Vicia sativa L.) and oat (Avena sativa L.) with and without N fertilizer on the Tibetan plateau in 2009 and 2010. Re was measured using a static closed opaque chamber. Re intensity was estimated as the ratio of seasonal average Re during the growing season to aboveground biomass.

Results

Compared with common vetch monoculture pasture, mixed legume-grass pastures only significantly decreased Re intensity (with a decrease of about 75 %–87 %) in the drought year 2009 due to greater increases in aboveground biomass compared to increases in Re. There were no significant differences in Re and Re intensity among different seeding ratios of oat and common vetch in either year. N fertilizer significantly decreased Re intensity for common vetch monoculture pasture by 24.5 % in 2009 and 69.5 % in 2010 although it did not significantly affect plant production and Re.

Conclusions

From the perspective of forage yield and Re, planting mixed legume-grass pastures without N fertilizer is a preferable way to balance the twin objectives of forage production and mitigation of atmospheric greenhouse gas emissions in alpine regions.  相似文献   

17.
赵飘  刘振亚  王娜  牛孟莹  艾静  肖德荣  王行 《广西植物》2022,42(7):1126-1135
为掌握挺水植物克隆生长与有性繁殖参数的空间分布格局特征及环境因子对植物繁殖的影响路径,该文利用云南高原的立体地形,通过空间替代时间的方法,探讨6个湖泊共有挺水植物水葱(Schoenoplectus tabernaemontani)的克隆生长、有性繁殖的地理差异和变化规律以及对环境变化的响应。结果表明:(1)密度、株高、基径等克隆生长参数,以及结实率、穗生物量及其投资比、种子产量、活性种子数等繁殖参数在不同地理空间上存在显著差异(P<0.05),而地上生物量无显著差异。(2)密度、株高、结实率、穗生物量及其投资比等参数具有显著的经纬度、海拔地带性分布特征,其中密度随纬度和海拔的增加而增加、随经度的增加而减小,而株高、结实率、穗生物量及其投资比随纬度和海拔的增加而减小、随经度的增加逐渐增大。(3)暖月和冷月均温,土壤全氮、全磷是影响水葱克隆生长(密度、株高)的关键因子,其中暖月均温影响最大,年均降水、土壤有机碳是影响水葱有性繁殖的关键因子,其中年均降水影响最大。综上认为,气候因子(暖月均温、冷月均温和年均降水)是影响云南高原湖泊湖滨带植物水葱生长和繁殖的主要因子。  相似文献   

18.
Above- and belowground biomass allocation not only influences growth of individual plants, but also influences vegetation structures and functions, and consequently impacts soil carbon input as well as terrestrial ecosystem carbon cycling. However, due to sampling difficulties, a considerable amount of uncertainty remains about the root: shoot ratio (R/S), a key parameter for models of terrestrial ecosystem carbon cycling. We investigated biomass allocation patterns across a broad spatial scale. We collected data on individual plant biomass and systematically sampled along a transect across the temperate grasslands in Inner Mongolia as well as in the alpine grasslands on the Tibetan Plateau. Our results indicated that the median of R/S for herbaceous species was 0.78 in China’s grasslands as a whole. R/S was significantly higher in temperate grasslands than in alpine grasslands (0.84 vs. 0.65). The slope of the allometric relationship between above- and belowground biomass was steeper for temperate grasslands than for alpine. Our results did not support the hypothesis that aboveground biomass scales isometrically with belowground biomass. The R/S in China’s grasslands was not significantly correlated with mean annual temperature (MAT) or mean annual precipitation (MAP). Moreover, comparisons of our results with previous findings indicated a large difference between R/S data from individual plants and communities. This might be mainly caused by the underestimation of R/S at the individual level as a result of an inevitable loss of fine roots and the overestimation of R/S in community-level surveys due to grazing and difficulties in identifying dead roots. Our findings suggest that root biomass in grasslands tended to have been overestimated in previous reports of R/S.  相似文献   

19.
Aims Plant biomass accounts for the main part of grassland productivity. The productivity of grassland regarded as one of important ecosystem function is always co-limited by nitrogen and water availability, therefore, how grasslands respond to atmosphic nitrogen (N) addition and precipitation increasing need to be systematically and quantitatively evaluated at different climate conditions and temporal scales. Methods To investigate the impact of nitrogen addition and precipitation increasing on grassland biomass over climate conditions and temproal scales, a meta-analysis was conducted based on 46 papers that were published during 1990-2017 involving 1 350 observations. Important findings Results showed that: (1) N addtion, precipitation increasing and the combinations of these two treatments significantly increased the aboveground biomass (37%, 41%, 104%), total biomass (32%, 23%, 60%) and the ratio of aboveground biomass to belowground biomass (29%, 25%, 46%) in grassland ecosystem. Belowground biomass showed no response to single N addtion, but could be significantly enhanced together with increaseing precipitation; (2) The response of grassland biomass under these N addtion and the increasing of precipitation showed obvious spatial pattern under different climate conditions. The N addition tended to increase more aboveground biomass, total biomass and the ratio of aboveground biomass to belowground biomass under high sites with high mean annual air temperature (MAT) and mean annual precipitation (MAP) while precipitation increasing tended to simulate more belowground biomass and total biomass under low MAT and MAP sites; (3) In addition, the response of grassland biomass under these two global change index showed obvious temporal pattern. With the increase of duration of N addition, the belowgound biomass tended to decrease, while the aboveground biomass, total biomass and the ratio of aboveground biomass to belowground biomass tended to increase under N addition. With the increase of duration of precipitation manipulation, the total biomass showed no response to precipitation increasing, while aboveground biomass, belowground biomass and the ratio of aboveground biomass to belowground biomass tended to be enhanced. The results indicated that aboveground biomass was more likely to be enhanced than belowground biomass under N addition or precipitation increasing in the long term. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

20.
The Tibetan Plateau has undergone significant climate warming in recent decades, and precipitation has also become increasingly variable. Much research has explored the effects of climate change on vegetation on this plateau. As potential vegetation buried in the soil, the soil seed bank is an important resource for ecosystem restoration and resilience. However, almost no studies have explored the effects of climate change on seed banks and the mechanisms of these effects. We used an altitudinal gradient to represent a decrease in temperature and collected soil seed bank samples from 27 alpine meadows (3,158–4,002 m) along this gradient. A structural equation model was used to explore the direct effects of mean annual precipitation (MAP) and mean annual temperature (MAT) on the soil seed bank and their indirect effects through aboveground vegetation and soil environmental factors. The species richness and abundance of the aboveground vegetation varied little along the altitudinal gradient, while the species richness and density of the seed bank decreased. The similarity between the seed bank and aboveground vegetation decreased with altitude; specifically, it decreased with MAP but was not related to MAT. The increase in MAP with increasing altitude directly decreased the species richness and density of the seed bank, while the increase in MAP and decrease in MAT with increasing altitude indirectly increased and decreased the species richness of the seed bank, respectively, by directly increasing and decreasing the species richness of the plant community. The size of the soil seed bank declined with increasing altitude. Increases in precipitation directly decreased the species richness and density and indirectly decreased the species richness of the seed bank with increasing elevation. The role of the seed bank in aboveground plant community regeneration decreases with increasing altitude, and this process is controlled by precipitation but not temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号