首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The zearalenone (ZEA) monoclonal antibody (mAb) 2D3, one of the highest sensitivity antibodies, was developed. Based on this mAb, it was established of an immunoaffinity column (IAC) coupled with an indirect competitive enzyme-linked immunosorbent assay (icELISA). After optimization, the icELISA allowed an IC50 against ZEA of 0.02 µg L−1. The mAb 2D3 exhibited a high recognition of ZEA (100%) and β-zearalenol (β-ZOL, 88.2%). Its cross-reactivity with α-zearalenol (α-ZOL) and β-zearalanol (β-ZAL) were found to be 4.4% and 4.6%, respectively. The IAC-icELISA method was employed to analyze ZEA contamination in food samples, compared with high-performance liquid chromatography (HPLC). The spiked assay for ZEA demonstrated the considerable recoveries for IAC-icELISA (83–93%) and HPLC (94–108%) methods. Results showed that the mAb 2D3 and IAC-icELISA method posed potential applications in sensitively determination of ZEA in maize.  相似文献   

2.
Deng A  Tan W  He S  Liu W  Nan T  Li Z  Wang B  Li QX 《植物学报(英文版)》2008,50(8):1046-1052
Methyl jasmonate (MeJA) and its free-acid form,jasmonic acid (JA) are naturally occurring plant growth regulators widely distributed in higher plants.In order to improve the sensitivity for the analysis of MeJA at low levels in small amounts of plant samples,a monoclonal antibody (MAb) (designated as MAb 3E5D7C4B6) against MeJA was derived from a JAbovine serum albumin (BSA) conjugate as an immunogen.The antibody belongs to the IgG1 subclass with a κ type light chain and has a dissociation constant of approximately 6.07 x 10-9 M.MAb3E5D7C4B6 is very specific to MeJA.It was used to develop a direct competitive enzyme-linked immunosorbent assay (dcELISA),conventional and simplified indirect competitive ELISAs (icELISA).JA was derivatized into MeJA for the ELISA analysis.The IC50 value and detection range for MeJA were,respectively,34 and 4-257 ng/mL by the conventional icELISA,21 and 3-226 ng/mL by the simplified icELISA and 5.0 and 0.7-97.0 ng/mL by the dcELISA.The dcELISA was more sensitive than either the conventional or simplified icELISA.The assays were used to measure the content of jasmonates as MeJA in tobacco leaves under drought stress or inoculated with tobacco mosaic virus and tomato leaves inoculated with tomato mosaic virus or Lirioinyza sativae Blanchard as compared with the corresponding healthy leaves.The increased jasmonates content indicated its role in response to the drought stress and pathogens.  相似文献   

3.
Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5–305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3–370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3–311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2–205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species.  相似文献   

4.
In the present study, field micro-plot experiments were conducted to investigate the basal and foliar application of a tested organic fertilizer amendment (OFA) for decreasing the risk of Cd accumulating in rice. The results showed that applications of OFA significantly increased rice yields in Cd-polluted soil and reduced the level of Cd in rice plants, especially in rice grain. In addition, three application methods of OFA were investigated (single basal application (B1, B2, and B3), combined basal application (+LM, +D, and +Z), and foliar application (F1, F2)). Treat B, F, +LM, +D were all higher than control on rice yield with 25.03, 28.05, 30.61, 22.50 g pot?1 on average, respectively. Among which, rice cadmium depress to 0.33 mg kg?1 in foliar application is considered to be a more efficient and economical method of heavy metal remediation. The mechanism of foliar application to alleviate the accumulation of Cd in brown rice may be related to the probable Cd sequestration in the leaves and straws. And the doses of the foliar application were 2.25–3.75 kg hm?2, approximately 1.0–2.5% of the basal application amount yet with more effect (0.10 mg kg?1 more than single basal; 0.23 mg kg?1 more than combined basal) on Cd reduction.  相似文献   

5.
A collagen was isolated from squid skin, a processing waste product. The biofunctional activities of enzymatic squid skin collagen hydrolysates were determined to produce a value-added material. Five low-molecular-mass hydrolysate fractions, F1 (>30 kD), F2 (10–30 kD), F3 (3–10 kD), F4 (1–3 kD), and F5 (<1 kD), were manufactured from its enzymatic hydrolysate by ultrafiltration. Fraction F3 had the strongest antihyaluronidase inhibitory activity. Gly, Val, and Pro were major amino acids in F3, while Met, Tyr, and His were minor ones. The molecular mass of F3 was in the range of 3.4 to 10 kD. F3 exhibited copper chelating ability in a concentration-dependent manner. The ferrous chelating ability of F3 was almost 50% at 200 µg/mL. F3 also inhibited tyrosinase activity by 39.65% at 1 mg/mL. Furthermore, F3 had stronger hydroxyl radical scavenging activity (IC50 = 149.94 µg/mL) than ascorbic acid (IC50 = 212.94 µg/mL). Therefore, the squid collagen hydrolysate can be utilized as a nutraceutical or cosmeceutical agent.  相似文献   

6.
The influence of three plant growth regulators, indolebutyric acid (IBA), thidiazuron (TDZ) and gibberellic acid (GA3), either individually or in pair-wise combinations, on the ability of waxy corn plant to remove hexachlorocyclohexane (HCH) from contaminated soil was studied. Waxy corn seeds were immersed for 3 h in solutions of 1.0 mg/l IBA, 0.01 mg/l TDZ, 0.1 mg/l GA3, or a mixture of two of the growth regulators, and then inoculated in soil contaminated with 46.8 mg/kg HCH for 30 days. Pretreatment of corn seeds with the plant growth regulators did not enhance corn growth when compared with those immersed in distilled water (control), but the pretreatment enhanced HCH removal significantly. On day 30, HCH concentration in the bulk soil planted with corn seeds pretreated with GA3 or TDZ+GA3 decreased by 97.4% and 98.4%, respectively. In comparison, HCH removal in soil planted with non-pretreated control waxy corn seeds was only 35.7%. The effect of several growth regulator application methods was tested with 0.01 mg/l TDZ. The results showed that none of the methods, which ranged from seed immersion, watering in soil, or spraying on shoots, affected HCH removal from soil. However, the method of applying the growth regulators may affect corn growth. Watering the corn plant with TDZ in soil led to higher root fresh weight (2.2 g) and higher root dried weight (0.57 g) than the other treatments (0.2–1.7 g root fresh weight and 0.02–0.43 g root dried weight) on day 30. Varying the concentrations of GA3 did not affect the enhancement of corn growth and HCH removal on day 30. The results showed that plant growth regulators may have potential for use to enhance HCH phytoremediation.  相似文献   

7.
A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 106 cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 107 to 1.8 × 107 cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.  相似文献   

8.
The effects of thidiazuron (TDZ) pretreatment of shoot tips on Harpagophytum procumbens shoot proliferation and successive stages of micropropagation, i.e. rooting of regenerated shoots and acclimatization of plantlets to ex vitro conditions, were described in the present study. The best response in terms of shoot proliferation (about seven shoots/explant) and shoot length (3.2 ± 0.4 cm) was obtained when explants pretreated with 25 µmol L?1 TDZ for 6 h were cultured on Schenk and Hildebrandt medium containing indole-3-acetic acid (IAA) (0.57 µmol L?1) and 6-benzylaminopurine (BAP) (8 µmol L?1). Under these conditions, a 330 % increase in shoot multiplication over TDZ non-pretreatment culture was achieved and TDZ pretreatment shoots were longer compared to those in control culture (2.6 ± 0.3 cm). The TDZ pretreatment did not affect the percentage of rooted shoots, length of roots and number of roots formed per shoot. The rooted plantlets were transplanted from in vitro to pots with soil and grown during 1 year in the greenhouse. The hardening process was difficult and time-consuming. We found that the plants developed from the TDZ pretreated culture were superior to plants from non-pretreated culture in terms of survival rate and morphological features, such as shoot length, leaf size, flowering and earlier root tuberisation. Random amplified polymorphic DNA and inter-simple sequence repeat analyses of pretreatment with TDZ plants showed genetic similarity to non-pretreatment plants. We conclude that applying the strategy of initial explant pretreatment with TDZ may be valuable for the improvement in H. procumbens in vitro propagation.  相似文献   

9.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

10.
The objective of this study was to investigate the activity of a protein identified as cysteine protease, purified from Zingiber ottensii Valeton rhizomes, in terms of antiproliferation against fungi, bacteria, and human malignant cell lines. By means of buffer extraction followed by (NH4)2SO4 precipitation and ion-exchange chromatography, the obtained dominant protein (designated F50) was submitted to non-denaturing and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), where a single band and three bands were revealed from eletrophoretic patterns, respectively. It could be concluded at this point that the F50 was potentially a heterotrimer or heterodimer composed of either two small (~13.8 and ~15.2 kD) subunits or these two together with a larger (~32.5 kD) one. In-gel digestion was carried out for the most intense band from reducing SDS-PAGE, and to the resulting material was applied liquid chromatography (LC)–mass spectroscopy (MS)/MS. The main F50 subunit was found to contain fragments with 100% similarity to zingipain-1, a cysteine protease first discovered in Zingiber officinale. The activity corresponding to the identified data, cysteine protease, was then confirmed in the F50 by azocasein assay and a positive result was obtained. The F50 then was further investigated for antiproliferation against three plant pathogenic fungi species by disk diffusion test, four bacterial species by direct exposure in liquid culture and dish diffusion tests, and five human malignant cell lines by tissue culture assay. It was found that a dose of 23.6 µg F50/0.3 cm2 of paper disk exhibited the best inhibitory effect against Collectotrichum cassiicola, while lesser effects were found in Exserohilum turicicum and Fusarium oxysporum, respectively. No inhibitory effect against bacterial proliferation was detected in all studied bacterial strains. However, relatively strong antiproliferative effects were found against five human cell lines, with IC50 values ranging from 1.13 µg/mL (hepatoma cancer; HEP-G2) to 5.37 µg/mL (colon cancer; SW620). By periodic acid–Schiff's staining and phenol–sulfuric acid assay, the F50 was determined as a glycoprotein containing 26.30 ± 1.01% (by weight) of carbohydrate. Thus, a new glycoprotein with protease activity was successfully identified in Zingiber ottensii rhizome. The glycoprotein also contained antiproliferative activity against some plant pathogenic fungi and human cancer cell lines.  相似文献   

11.
The β-defensins, expressed in epithelial cells of multiple tissues including intestine, play a critical role in the mammalian innate immunity. However, it is little known about the role of functional nutrients in the regulation of porcine β-defensins’ expressions in intestinal epithelial cells. The present study was conducted to determine the hypothesis that zinc and l-isoleucine regulate the expressions of porcine β-defensins in IPEC-J2 cells. Cells were cultured in DMEM/F12 medium containing supplemental 0–500 μg/mL l-isoleucine or 0–500 μmol/mL zinc sulfate that was used to increase the concentration of Zn2+ in the medium. At 12 h after the treatment by the appropriate concentrations of l-isoleucine or Zn2+, the mRNA and protein expressions of porcine β-defensin 1, 2 and 3 were increased (P < 0.05), and reached their maximum after treatment with 25 or 100 μmol/mL zinc sulfate and 25 or 50 μg/mL isoleucine (P < 0.05). These results suggested that both Zn2+ and l-isoleucine could induce β-defensins’ expressions in porcine intestinal epithelial cells.  相似文献   

12.
Understanding spatial variability of emissions of nitrous oxide (N2O) is essential to understanding of N2O emissions from soils to the atmosphere and in the design of statistically valid measurement programs to determine plot, farm and regional emission rates. Two afternoon, ‘snap-shot’ experiments were conducted; one in the summer and one in the autumn of 2004, to examine the statistics and soil variables affecting the spatial variability of N2O emissions at paddock scale. Small, static chambers (mini-chambers) were placed at 100 locations over an 8,100 m2 area of irrigated dairy pasture in northern Victoria, Australia. Chamber headspace was sampled for N2O and soil samples taken below each mini-chamber were analysed for soil nitrate (NO3 -), ammonium (NH4 +) and other chemical and physical properties known to affect N2O emissions. The experiments took place immediately after the sequence of grazing, urea application and irrigation. Nitrous oxide emissions and soil variables were analysed using classical statistics to investigate the effect of soil variables on N2O emissions. Geostatistics were used to investigate spatial patterns of N2O emissions and soil variables over the measurement area. Nitrous oxide emissions were extremely variable; 45–765 ng N2O–N m?2 s?1 and 20–953 ng N2O–N m?2 s?1 for the two experiments with corresponding averages of 165 and 138 ng N2O–N m?2 s?1. Nitrous oxide emissions showed spatial dependence up to 73 and 51 m for the two experiments. Nitrous oxide emissions showed significant correlation with soil nutrients in decreasing order of NO3 -, NH4 + and available-P concentrations. There was no significant correlation of N2O emissions with measured soil physical properties.  相似文献   

13.
An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2?±?0.36 and 94.8?±?0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2?±?0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4?±?0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2?±?0.38%) and hardened (85?±?1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l?1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.  相似文献   

14.
The characterizations of residue levels and sources of organochlorine pesticides (OCPs) in soils are necessary to evaluate the potential pollution and risks of OCPs to the ecosystems and human health. A total of 51 surface soil samples were collected from peri-urban vegetable fields of Changchun and 13 OCPs were analyzed to learn the composition, spatial distribution and sources. The concentrations were in the ranges of 0.94–107.8 ng g?1 for DDTs, 0.89–98.3 ng g?1 for HCHs, 0.22–18.20 ng g?1 for Chlordanes, nd–4.49 ng g?1 for aldrin and nd–9.66 ng g?1 for dieldrin, respectively. The total OCPs concentrations ranged from 2.44 to 177.1 ng g?1 and the higher residues were mainly distributed in northeast and southwest sites, as well as sites along the Yitong River. According to the concentrations and detection frequencies, DDTs and HCHs were the most dominant compounds. Compositional analysis and principal component analysis suggested that DDT, HCH and chlordane in most soil samples derived from historical application except the slight fresh introduction at some locations. There exist a variety of OCPs residues in peri-urban vegetable soils of Changchun, but it is still safe and suitable for agricultural production for the most part, and some specific locations with high OCPs residues ought to be a cause for concern.  相似文献   

15.
Accumulations of radionuclides in marine macroalgae (seaweeds) resulting from the Fukushima 1 Nuclear Power Plant (F1NPP) accident in March 2011 have been monitored for two years using high-purity germanium detectors. Algal specimens were collected seasonally by snorkeling at Nagasaki, Iwaki, Fukushima Prefecture (Pref.), Japan, ca. 50 km perimeter from the F1NPP. Additional collections were done at Soma, Hironocho, Hisanohama and Shioyazaki in Fukushima Pref. as well as at Chiba Pref. and Hyogo Pref. as controls. In May 2011, specimens of most macroalgal species showed 137Cs levels greater than 3,000 Bq kg?1 at Shioyazaki and Nagasaki. The highest 137Cs level recorded 7371.20 ± 173.95 Bq kg?1 in Undaria pinnatifida (Harvey) Suringar on 2 May 2011, whereas seawater collected at the same time at Shioyazaki and Nagasaki measured 8.41 ± 3.21 and 9.74 ± 3.43 Bq L?1, respectively. The concentration factor of marine macroalgae was estimated to be ca. 8–50, depending on taxa and considering a weight ratio of wet/dry samples of ca. 10. 137Cs level declined remarkably during the following 5–6 months. In contrast, the 137Cs level remained rather stable during the following 12–16 months, and maintained the range of 10–110 Bq kg?1. Contamination was still detectable in many samples in March 2013, 24 months after the most significant pollution.  相似文献   

16.
Tea (Camellia sinensis (L.) O. Kuntze) hyper-accumulates fluoride (F), mainly in the leaves. To understand how tea copes with the stress caused by F, we tracked photosynthesis, antioxidant defense, and cell ultrastructure under different F concentrations (0–50 mg L?1). High F (≥5 mg L?1) caused decreases in photosynthetic and chlorophyll fluorescence parameters. Activated oxygen metabolism was altered by F, as manifested in increasing lipid peroxidation, electrolyte leakage (EL), and accumulation of H2O2. The activities of ascorbate peroxidase (APX, EC 1.11.1.1) and catalase (CAT, EC 1.11.1.6) increased at 0–5 mg L?1 F, but sharply decreased less than 10–50 mg L?1 F. The activity of manganese superoxide dismutase (Mn-SOD, EC 1.15.1.1) decreased with increasing F concentration. Expression of genes encoding antioxidant enzymes were in accordance with their measured activities. The results suggest that the antioxidant enzymes in the tea plant can eliminate reactive oxygen species (ROS) at <5 mg L?1 F, but not at 20–50 mg L?1 F. High F increased the number of epidermal hairs on tea leaves and decreased the stomatal aperture, reducing water loss. The leaf cellular structure appeared normal under 1–50 mg L?1 F, although starch grains in chloroplast increased with increasing F. Proline and betaine play important roles in osmotic regulation in tea plant tolerating F stress. ROS scavenging and greater number of epidermal hairs are likely parts of the tea plant F-tolerance mechanism.  相似文献   

17.
Branched-chain amino acids (BCAA) are actively taken up and catabolized by the mammary gland during lactation for syntheses of glutamate, glutamine and aspartate. Available evidence shows that the onset of lactation is associated with increases in circulating levels of cortisol, prolactin and glucagon, but decreases in insulin and growth hormone. This study determined the effects of physiological concentrations of these hormones on the catabolism of leucine (a representative BCAA) in bovine mammary epithelial cells. Cells were incubated at 37 °C for 2 h in Krebs buffer containing 3 mM d-glucose, 0.5 mM l-leucine, l-[1-14C]leucine or l-[U-14C]leucine, and 0–50 μU/mL insulin, 0–20 ng/mL growth hormone 0–200 ng/mL prolactin, 0–150 nM cortisol or 0–300 pg/mL glucagon. Increasing extracellular concentrations of insulin did not affect leucine transamination or oxidative decarboxylation, but decreased the rate of oxidation of leucine carbons 2–6. Elevated levels of growth hormone dose dependently inhibited leucine catabolism, α-ketoisocaproate (KIC) production and the syntheses of glutamate plus glutamine. In contrast, cortisol and glucagon increased leucine transamination, leucine oxidative decarboxylation, KIC production, the oxidation of leucine 2–6 carbons and the syntheses of glutamate plus glutamine. Prolactin did not affect leucine catabolism in the cells. The changes in leucine degradation were consistent with alterations in abundances of BCAA transaminase and phosphorylated levels of branched-chain α-ketoacid dehydrogenase. Reductions in insulin and growth hormone but increases in cortisol and glucagon with lactation act in concert to stimulate BCAA catabolism for glutamate and glutamine syntheses. These coordinated changes in hormones may facilitate milk production in lactating mammals.  相似文献   

18.
Citrinin (CIT) and Ochratoxin A (OTA) are nephrotoxic mycotoxins which can co-occur in food commodities, resulting in internal exposure. Studies in many countries reported on the presence of OTA in human blood; however, such biomonitoring data for CIT is still scarce. This study was conducted to characterize both CIT and OTA biomarker levels in plasma of volunteers since food analysis data are insufficient to assess human exposure in Bangladesh. In total 104 blood samples were collected from university students in 2013 (sampling 1: n?=?64, midsummer) and 2014 (sampling 2: n?=?40, end winter) for analysis of CIT and OTA and their metabolites HO-CIT and OTα by LC-MS/MS and HPLC-FD techniques, respectively. CIT and HO-CIT were detected in 90% (max 2.70 ng/mL) and 85% (max 1.44 ng/mL) of all samples. Mean levels in sampling 2 (CIT 0.47 ng/mL; HO-CIT 0.40 ng/mL) were higher than in sampling 1 (0.25 ng/mL; 0.37 ng/mL) indicative of variable CIT exposure. OTA was present in all (max 6.63 ng/mL) and OTα in 98% (max 0.99 ng/mL) of the samples. In sampling 1, mean OTA (0.85 ng/mL) was higher than in sampling 2 (0.51 ng/mL); the reverse situation was found for OTα mean levels. The calculated dietary OTA intake among the students (mean 9.9; max 91.7 ng/kg bw/week) was lower than the tolerable weekly intake for this mycotoxin (120 ng/kg bw/week) set by EFSA. But frequent co-exposure to CIT should be considered, and the results of this study indicate the necessity to identify major sources of CIT and OTA intake in the Bangladeshi population.  相似文献   

19.
Soil organic carbon (soil C) sequestration in forests is often higher under nitrogen (N2)-fixing than under non-N2-fixing tree species. Here, we examined whether soil C could be increased using mixed-species plantations compared to monocultures, which are less productive aboveground than mixtures. In addition, we compared soil C sequestration under N2-fixing trees with non-N2-fixing trees that received N fertilizer. Monocultures of Eucalyptus globulus (E) and the N2-fixing Acacia mearnsii (A) and mixtures of these species were planted in a replacement series: 100%E, 75%E + 25%A, 50%E + 50%A, 25%E + 75%A and 100%A. Soil samples were also collected from fertilized monoculture treatments (100%EFer) of E. globulus (250 kg N ha?1). Total organic C, N and phosphorus were determined at age 8 years at two soil depths (0–10 cm and 10–30 cm) and three density fractions of soil organic matter (SOM) were quantified for 0–5 cm depth. Soil C was highest in the 50%E + 50%A mixed stand and was highly correlated with aboveground biomass, not to the percentage of A. mearnsii in mixtures. This was largely due to soil C at 10–30 cm because there were no treatment effects on soil C at 0–10 cm. All density fractions of SOM at 0–5 cm increased with the percentage of A. mearnsii. In E. globulus monocultures, N fertilization did not increase soil C when compared with unfertilized stands. These results indicate that the inclusion of N2-fixing trees into eucalypt plantations may increase soil C stocks through increased productivity.  相似文献   

20.
A specific 5′ NH2 labeled DNA probe of speB gene was immobilized onto the gold nanoparticles/carboxylated multi walled carbon nanotubes (Nano-Au/cMWCNT) screen printed electrode using EDC/NHS cross linking chemistry. This was followed by hybridization with 0.5–50 ng/6 µl of single stranded genomic DNA Streptococcus pyogenes infected patient throat swab samples. Electrochemical amperometric assay was deciphered by using cyclic voltammetry (CV) with methylene blue a redox indicator. The sensor had a sensitivity of 104.7 µA cm?2 ng?1 using CV with a R2 of 0.907 and 0.01 ng/6 µl as the limit of detection (LOD). The modified electrode surface morphology was characterized using scanning electron microscopy. The stability of the electrode was seen at 4 °C for 180 days having 6% loss in the initial current. The sensor is speB gene specific and can detect the pathogen within 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号