首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although salt stress mainly disturbs plant root growth by affecting the biosynthesis and signaling of phytohormones, such as gibberellin (GA) and auxin, the exact mechanisms of the crosstalk between these two hormones remain to be clarified. Indole-3-acetic acid (IAA) is a biologically active auxin molecule. In this study, we investigated the role of Arabidopsis GA20-oxidase 2 (GA20ox2), a final rate-limiting enzyme of active GA biosynthesis, in IAA-directed root growth under NaCl stress. Under the NaCl treatment, seedlings of a loss-of-function ga20ox2-1 mutant exhibited primary root and root hair elongation, altered GA4 accumulation, and decreased root Na+ contents compared with the wild-type, transgenic GA20ox2-complementing, and GA20ox2-overexpression plant lines. Concurrently, ga20ox2-1 alleviated the tissue-specific inhibition of NaCl on IAA generation by YUCCAs, IAA transport by PIN1 and PIN2, and IAA accumulation in roots, thereby explaining how NaCl increased GA20ox2 expression in shoots but disrupted primary root and root hair growth in wild-type seedlings. In addition, a loss-of-function pin2 mutant impeded GA20ox2 expression, indicating that GA20ox2 function requires PIN2 activity. Thus, the activation of GA20ox2 retards IAA-directed primary root and root hair growth in response to NaCl stress.  相似文献   

2.
The roles of fungal auxins in the regulation of elongation growth, photo-, and gravitropism are completely unknown. We analyzed the effects of exogenous IAA (indole-3-acetic acid), various synthetic auxins including 1-NAA (1-naphthaleneacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), and the auxin transport inhibitor NPA (N-1-naphtylphtalamic acid) on the growth rate and bending of the unicellular sporangiophore of the zygomycete fungus, Phycomyces blakesleeanus. Sporangiophores that were submerged in an aqueous buffer responded to IAA with a sustained enhancement of the growth rate, while 1-NAA, 2,4-D, and NPA elicited an inhibition. In contrast, sporangiophores kept in air responded to IAA with a 20 to 40% decrease of the growth rate, while 1-NAA and NPA elicited an enhancement. The unilateral and local application of IAA in the growing zone of the sporangiophore elicited in 30 min a moderate negative tropic bending in wild type C2 and mutant C148madC, which was, however, partially masked by a concomitant avoidance response caused by the aqueous buffer. Auxin transport-related genes ubiquitous in plants were found in a BLAST search of the Phycomyces genome. They included members of the AUX1 (auxin influx carrier protein 1), PILS (PIN-LIKES, auxin transport facilitator protein), and ABCB (plant ATP-binding cassette transporter B) families while members of the PIN family were absent. Our observations imply that IAA represents an intrinsic element of the sensory transduction of Phycomyces and that its mode of action must very likely differ in several respects from that operating in plants.  相似文献   

3.
4.
The crosstalk between auxin and cytokinin (CK) is important for plant growth and development, although the underlying molecular mechanisms remain unclear. Here, we describe the isolation and characterization of a mutant of Arabidopsis Cytokinin-induced Root Curling 6 (CKRC6), an allele of ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) that encodes the á-subunit of AS in tryptophan (Trp) biosynthesis. The ckrc6 mutant exhibits root gravitropic defects and insensitivity to both CK and the ethylene precursor 1-aminocyclopropane-1-carboxylicacid (ACC) in primary root growth. These defects can be rescued by exogenous indole-3-acetic acid (IAA) or tryptophan (Trp) supplementation. Furthermore, our results suggest that the ckrc6 mutant has decreased IAA content, differential expression patterns of auxin biosynthesis genes and CK biosynthesis isopentenyl transferase (IPT) genes in comparison to wild type. Collectively, our study shows that auxin controls CK biosynthesis based on that CK sensitivity is altered in most auxin-resistant mutants and that CKs promote auxin biosynthesis but inhibit auxin transport and response. Our results also suggest that CKRC6/ASA1 may be located at an intersection of auxin, CK and ethylene metabolism and/or signaling.  相似文献   

5.
The ectendomycorrhizal fungus Terfezia boudieri is known to secrete auxin. While some of the effects of fungal auxin on the plant root system have been described, a comprehensive understanding is still lacking. A dual culture system to study pre mycorrhizal signal exchange revealed previously unrecognized root–fungus interaction mediated by the fungal auxin. The secreted fungal auxin induced negative taproot gravitropism, attenuated taproot growth rate, and inhibited initial host development. Auxin also induced expression of Arabidopsis carriers AUX1 and PIN1, both of which are involved in the gravitropic response. Exogenous application of auxin led to a root phenotype, which fully mimicked that induced by ectomycorrhizal fungi. Co-cultivation of Arabidopsis auxin receptor mutants tir1-1, tir1-1 afb2-3, tir1-1 afb1-3 afb2-3, and tir1-1 afb2-3 afb3-4 with Terfezia confirmed that auxin induces the observed root phenotype. The finding that auxin both induces taproot deviation from the gravity axis and coordinates growth rate is new. We propose a model in which the fungal auxin induces horizontal root development, as well as the coordination of growth rates between partners, along with the known auxin effect on lateral root induction that increases the availability of accessible sites for colonization at the soil plane of fungal spore abundance. Thus, the newly observed responses described here of the root to Terfezia contribute to a successful encounter between symbionts.  相似文献   

6.
7.
8.
Low temperatures limit plant growth, development, and reproductive success. A series of complex adaptive responses in plants evolved to withstand this environmental challenge. Here, eight accessions of Elymus nutans, which originated in Tibet at altitudes between 3720 and 5012 m above sea level, were used to identify heritable adaptations to chilling stress. Dynamic responses of phytohormone, sugar, and gene expression levels related to chilling tolerance were analyzed. During the initial stage of chilling stress (0–24 h), some high-altitude E. nutans accessions exhibited rapid increases in abscisic acid (ABA), jasmonic acid (JA), and zeatin content. This coordinated with decreases in the levels of auxin (IAA), salicylic acid (SA), gibberellins (GA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). EnCBF9 and EnCBF14 expression in the high-altitude accessions, Baqing, Xainza, Damxung, and Ali, increased within 1 h of chilling exposure, while chilling induction of EnCOR14a was detected after 3 h of chilling stress. Accessions from high altitudes displayed an increased sucrose and raffinose accumulation and a reduced degradation of chlorophyll under chilling stress. After 24–120 h of chilling exposure, plant adaptation to the chilling treatment was associated with a lower accumulation of ABA and moderate rise of zeatin, IAA, GA, ACC, SA, and JA. EnCBF9, EnCBF14, and EnCOR14a genes were down-regulated during the late stage of chilling stress. Taken together, the dynamic responses of phytohormones and sugars, and the higher expression of the EnCBFs and EnCOR genes play critical roles in the acclimation to chilling in high-altitude accessions of E. nutans, thereby allowing them to achieve higher chilling tolerance.  相似文献   

9.
10.
The rice EMS-derived mutant leaf adaxialized 1 (lad1) was isolated based on its upward rolling leaf phenotype. Besides the adaxially rolled leaf, many other agronomic traits were also compromised in lad1. The rolling trait was characterized by a noticeable alteration of bulliform cells in the adaxial side of the leaves. Map-based cloning showed a single nucleotide substitution in the promoter region of the KAN1 gene in lad1 mutant. Further, over-expressing and CRISPR/cas9-edited knockdown transgenic plants confirmed that KAN1 was responsible for the mutant phenotype of lad1. Yeast two-hybrid and bimolecular fluorescence complementation assay demonstrated that KAN1 can interact with the auxin response factors ARF3, ARF7 and ARF15. Physiologically, the contents of auxin (IAA), abscisic acid (ABA), jasmonic acid (JA) and gibberellin (GA) were all significantly increased in the lad1 mutant. Moreover, the GA3 content dramatically decrease in wild-type, but increased in lad1 under IAA induction. Additionally, the expression levels of several IAA and GA biosynthesis and responsive-related genes and genes involved in leaf polarity determination were altered in lad1. Therefore, we hypothesized that KAN1/ARFs protein complexes act as auxin-dependent regulatory units that play a conserved role in leaf development.  相似文献   

11.

Key message

Endophytic microbes Bacillus sp. LZR216 isolated from Arabidopsis root promoted Arabidopsis seedlings growth. It may be achieved by promoting the lateral root growth and inhibiting the primary root elongation.

Abstract

Plant roots are colonized by an immense number of microbes, including epiphytic and endophytic microbes. It was found that they have the ability to promote plant growth and protect roots from biotic and abiotic stresses. But little is known about the mechanism of the endophytic microbes-regulated root development. We isolated and identified a Bacillus sp., named as LZR216, of endophytic bacteria from Arabidopsis root. By employing a sterile experimental system, we found that LZR216 promoted the Arabidopsis seedlings growth, which may be achieved by promoting the lateral root growth and inhibiting the primary root elongation. By testing the cell type-specific developmental markers, we demonstrated that Bacillus sp. LZR216 increases the DR5::GUS and DR5::GFP expression but decreases the CYCB1;1::GUS expression in Arabidopsis root tips. Further studies indicated that LZR216 is able to inhibit the meristematic length and decrease the cell division capability but has little effect on the quiescent center function of the root meristem. Subsequently, it was also shown that LZR216 has no significant effects on the primary root length of the pin2 and aux1-7 mutants. Furthermore, LZR216 down-regulates the levels of PIN1-GFP, PIN2-GFP, PIN3-GFP, and AUX1-YFP. In addition, the wild-type Arabidopsis seedlings in the present of 1 or 5 µM NPA (an auxin transport inhibitor) were insensitive to LZR216-inhibited primary root elongation. Collectively, LZR216 regulates the development of root system architecture depending on polar auxin transport. This study shows a new insight on the ability of beneficial endophytic bacteria in regulating postembryonic root development.
  相似文献   

12.
A wide range of microorganisms found in the rhizhosphere are able to regulate plant growth and development, but little is known about the mechanism by which epiphytic microbes inhibit plant growth. Here, an epiphytic bacteria Stenotrophomonas maltophilia, named as LZMBW216, were isolated and identified from the potato (Solanum tuberosum L. cv. Da Xi Yang) leaf surface. They could decrease primary root elongation and lateral root numbers in Arabidopsis seedlings. The inhibitory effects of LZMBW216 on plant growth were not due to a reduced indole-3-acetic acid (IAA) content, as exogenously applied IAA did not recover the inhibition. Furthermore, LZMBW216 did not affect the expression of DR5::GUS and CycB1;1::GUS. However, we found that LZMBW216 exhibited little effect on the primary root elongation in the pin2 mutant and on the lateral root numbers in the aux1-7 mutant. Moreover, LZMBW216 decreased expressions of AUX1 and PIN2 proteins. Together, these results suggest that root system architecture alterations caused by LZMBW216 may involve polar auxin transport.  相似文献   

13.
Abscisic acid (ABA), auxins, and cytokinins (CKs) are known to be closely linked to nitrogen signaling. In particular, CKs control the effects of nitrate availability on plant growth. Our group has shown that treatment with high nitrate concentrations limits root growth and leaf development in maize, and conditions the development of younger roots and leaves. CKs also affect source-sink relationships in plants. Based on these results, we hypothesized that CKs regulate the source-sink relationship in maize via a mechanism involving complex crosstalk with the main auxin indole-3-acetic acid (IAA) and ABA. To evaluate this hypothesis, various CK metabolites, IAA, and ABA were quantified in the roots and in source and sink leaves of maize plants treated with high and normal nitrate concentrations. The data obtained suggest that the cis and trans isomers of zeatin play completely distinct roles in maize growth regulation by a complex crosstalk with IAA and ABA. We demonstrate that while trans-zeatin (tZ) and isopentenyladenine (iP) regulate nitrate uptake and thus control final leaf sizes, cis-zeatin (cZ) regulates source and sink strength, and thus controls leaf development. The implications of these findings relating to the roles of ABA and IAA in plants’ responses to varying nitrate concentrations are also discussed.  相似文献   

14.
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.  相似文献   

15.

Key message

Lower promoter activity is closely associated with lower MdPIN1b expression in the M9 interstem, which might contribute to the dwarfing effect in apple trees.

Abstract

Apple trees grafted onto dwarfing rootstock Malling 9 (M9) produce dwarfing tree architecture with high yield and widely applying in production. Previously, we have reported that in Malus ‘Red Fuji’ (RF) trees growing on M9 interstem and Baleng Crab (BC) rootstock, IAA content was relatively higher in bark tissue of M9 interstem than that in scion or rootstock. As IAA polar transportation largely depends on the PIN-FORMED (PIN) auxin efflux carrier. Herein, we identify two putative auxin efflux carrier genes in Malus genus, MdPIN1a and MdPIN1b, which were closely related to the AtPIN1. We found that MdPIN1b was expressed preferentially in BC and M9, and the expression of MdPIN1b was significantly lower in the phloem of M9 interstem than that in the scion and rootstock. The distinct expression of MdPIN1b and IAA content were concentrated in the cambium and adjacent xylem or phloem, and MdPIN1b protein was localized on cell plasma membrane in onion epidermal cells transiently expressing 35S:MdPIN1b-GFP fusion protein. Interestingly, an MdPIN1b mutant allele in the promoter region upstream of M9 exhibited decreased MdPIN1b expression compared to BC. MdPIN1b over-expressing interstem in tobacco exhibited increased polar auxin transport. It is proposed that natural allelic differences decreased promoter activity is closely associated with lower MdPIN1b expression in the M9 interstem, which might limit the basipetal transport of auxin, and in turn might contribute to the dwarfing effect. Taken together, these results reveal allelic variation underlying an important apple rootstock trait, and specifically a novel molecular genetic mechanism underlying dwarfing mechanism.
  相似文献   

16.
Artemisinin, an antimalarial secondary metabolite produced in Artemisia species, also has been recognized as an allelochemical that inhibits the growth of several plant species. However, the phytotoxicity mechanism of artemisinin is not exhaustively deciphered up to now. In this research, the effects of artemisinin on Arabidopsis thaliana root gravitropic curvature and development were characterized. Exogenously applied artemisinin disturb the root gravitropic responses, inhibited the elongation of primary and lateral roots and root hairs in a concentration-dependent fashion, and prevented the formation of lateral roots and root hairs. Moreover, the number of starch grain and the distribution range of auxin in the root tip was reduced by artemisinin, and the redistribution of auxin was less sensitive to gravity stimulus when treated with artemisinin than that of control. The expression of auxin transporter PIN2 was partially suppressed by artemisinin. Together, the results demonstrated that the effects of artemisinin on root gravitropism and root system development were largely dependent on the reduction of starch grain and auxin levels, as well as the disordered lateral auxin redistribution.  相似文献   

17.
Phytohormones regulate numerous aspects of plant growth and development. Green-mature banana fruit were treated with deionized water (control), abscisic acid (ABA), indole-3-acetic acid (IAA) and ABA + IAA, respectively, to investigate the role of ABA and IAA in fruit ripening. Results showed that ABA accelerated fruit ripening, but IAA delayed the process. However, treatment of ABA + IAA showed little difference in fruit color and firmness. The acceleration of ABA and delay of IAA on banana ripening process seems to be neutralized by ABA + IAA. Digital gene expression revealed that ABA + IAA treated fruit maintained the similar color phenotype with the control by regulating the expression of chlorophyll degradation-related gene PaO (GSMUA_Achr6G25590_001), and carotenoid biosynthesis-related genes DXR (GSMUA_Achr3G20790_001) and PSY (GSMUA_Achr2G12480_001, GSMUA_Achr4G17270_001, GSMUA_Achr4G17290_001). Moreover, ABA + IAA treated fruit maintained the similar softening phenotype with the control by adjusting the expression of pectin degradation-related genes PME (GSMUA_Achr3G05740_001) and PL (GSMUA_Achr6G28160_001, GSMUA_Achr7G04580_001). ABA + IAA treatment nearly abolished the action of individual ABA or IAA through equilibrating the expression of specific genes involved in chlorophyll degradation, carotenoid biosynthesis and pectin degradation pathways in the postharvest ripening of banana. The interaction between ABA and IAA might exercise as an antagonistic mechanism of neutralizing the specific gene expression either induced by ABA or reduced by IAA in the postharvest ripening of banana.  相似文献   

18.
19.
Development of xylem cells is affected by environmental stresses such as drought and oxidative stress, and recent findings suggested that jasmonic acid (JA) mediates this process through interaction with other phytohormones such as cytokinin. In this study, we showed that polar auxin transport regulated by PIN3 and PIN7 is involved in the JA-mediated xylem development in vascular tissues. The mutant plants that lack the activity of PIN3 and PIN7 responsible for the auxin transport developed extra xylems in vascular tissues such as the JA-treated wild-type plants. Visualization of auxin response and xylem development in the roots treated with NPA, an inhibitor of polar auxin transport, suggested that disruption of polar auxin transport is involved in the xylem phenotype of pin3 pin7 double mutants. We also found that cytokinin increases expressions of PIN3 and PIN7 responsible for the auxin transport while JA decreases only PIN7. These suggested that PIN7-mediated polar auxin transport system modulates xylem development in response to JA. The finding that JA affects auxin distribution in root vascular tissues further supported this. Collectively, these suggest that JA promotes xylem development by disrupting auxin transport in vascular tissues, and the auxin efflux genes, more especially PIN7 whose expression is suppressed by JA mediates this process.  相似文献   

20.
The Arabidopsis root system is modified in response to stress generated by high concentrations of nonessential ions such as chromate [Cr(VI)]. In this work, the distribution of auxin and its transporters PIN1 and PIN7, as well as the expression of genes that maintain the identity of the root meristem, were analyzed in Arabidopsis thaliana wild-type (WT) seedlings and in a mutant affected in the SOLITARY ROOT (SLR1/IAA14) locus, which is required for root response to Cr(VI). We show that primary root inhibition, auxin transporter levels, and expression of meristem identity genes were maintained in the slr-1 mutants but not in WT plants in response to Cr(VI) in a time- and concentration-dependent manner. Notably, the outermost single cell layer of the lateral root cap, which normally dies and tends to peel off, remains viable and increases in size following exposure of WT plants, but not slr-1 mutants, to Cr(VI). Our results suggest that (1) the primary root tip senses Cr(VI), (2) the external lateral root cap may play a protective role during Cr(VI) exposure, and (3) Cr(VI) impacts cell division in root meristems via auxin redistribution and SLR1/IAA14 function, influencing the expression of root meristem genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号