首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

The purpose of the present study was to investigate the mechanism of carbon monoxide (CO) and hematin in alleviating the inhibition of Cassia obtusifolia seeds and seedlings. NaCl (100?mM) was used to mimic salinity stress in a series of experiments.

Methods

Varying combinations of CO in a saturated aqueous solution and hematin (1.0?μM) were added to seeds and seedlings under salinity stress. Seed germination indices and seedling parameters were investigated.

Results

Seed germination and seedling growth were significantly inhibited under salinity stress. NaCl-induced inhibitory effects on seed germination and seedling growth were ameliorated by hematin or the CO aqueous solution. Addition of 1.0?μM hematin or 5?% CO-saturated aqueous solution to seeds and seedlings significantly alleviated damage to the plant cells under salinity stress. Hematin and the CO aqueous solution enhanced chlorophyll concentration, total soluble sugars, free proline, and soluble protein, and improved photosystem II (PSII) photochemical efficiency levels, PSII actual photochemical efficiency, and the photochemical quench coefficient. In contrast, the non-photochemical quenching coefficient decreased. Hematin and the CO aqueous solution also enhanced the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase, thus alleviating oxidative damage, as indicated by decreases in hiobarbituric acid reactive substances, hydrogen peroxide concentration, relative conductivity, and lipoxygenase activity. Heme oxygenase (HO) activity was increased by hematin treatment. Hematin may contribute to endogenous HO-derived CO, since the addition of zinc protoporphyrin IX or hemoglobin reversed the protective effects conferred by hematin specified above.

Conclusions

Based on the experimental results, we conclude that hematin and CO induce advantageous effects on the attenuation of salt-stress inhibition of C. obtusifolia seeds and seedlings and alleviate oxidative damage by conferring beneficial cytoprotection and activating anti-oxidant enzymes.  相似文献   

2.
Increase in salinity is predicted to affect plant growth and survival in most arid and semiarid regions worldwide. Mitragyna parvifolia (Roxb.) Korth. is an important medicinal tree species distributed throughout the semiarid regions of India; however, it is facing a threat of its extinction in its natural habitat. We examined the effects of increasing NaCl salinity on two-month-old M. parvifolia seedlings grown in an environment-controlled chamber and exposed to soils of different electrical conductivity (EC) caused by NaCl [0–5 (control), 5–10, 10–15, 15–20, and 20–25 dS m?1)] for 85 days. Seedlings transferred to soil of EC >15 dS m?1 did not survive beyond 1 week. Increase in the Na+ concentration negatively correlated with their height and positively correlated with their water-use efficiency (WUE). However, leaf area, net photosynthetic rate (P N), stomatal conductance, and transpiration rate showed varying correlations and an overall decrease in these parameters compared with the control. At EC of 10–15 dS m?1, the seedling height was reduced by 37% and P N was lowered by 50% compared with those of the control. An increase in the Na+/K+ ratio was observed with increasing salinity. The maximum quantum efficiency of PSII significantly decreased with increasing salinity compared with the control. Our results suggest that the increase in salinity reduced the overall performance of the M. parvifolia seedlings. However, the maintenance of WUE and maximum quantum efficiency of PSII might help M. parvifolia to tolerate NaCl salinity of 15 dS m?1.  相似文献   

3.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

4.
Salinity is a major problem of many agricultural lands that is usually associated with drought stress in arid and semi-arid regions. In this study we examine the role of salinity stress on temperature requirements of two herbaceous species and how it could be modeled to quantify alterations. We applied four non-linear regression models (segmented, beta, beta modified, and dent-like) to describe the germination rate–temperature relationships of Silybum marinum L. and Calendua officinalis L. over six constant temperatures exposed to different levels of salinity stress. Our results revealed that salinity could affect the cardinal temperatures in both plants and, as a result, it is not possible to suggest one model for all levels of salinity stress. The best model to fit data to predict cardinal temperatures of Silybum marianum and Calendula officinalis at the no-salinity condition were dent-like (AICc?=?4.03) and beta (AICc = ??2.30), respectively. Knowing the thermal time constant (fo) value helps us predict the minimum number of hours required for completion of germination at the optimal temperature. All models in this study were estimated higher fo due to higher salinity stress in both Silybum marianum and Calendula officinalis seeds. The highest estimated fo for Silybum marianum (91.5?±?59.6) and Calendula officinalis (178.9?±?26.5) was obtained from the results of germination rate prediction using a dent-like model at 200 mM salinity.  相似文献   

5.
The objective of this investigation was to evaluate the simultaneous action of light stress and salinity. Pulse amplitude modulated chlorophyll fluorescence, P700 redox state, and pigment analysis were used to assess the impact of high light intensity on Paulownia tomentosa × fortunei and Paulownia elongata × elongata grown on soils with different salinity. It was found that light stress reduced the amount of pigments and the efficiency of photochemical energy conversion, inhibited the maximum and the effective quantum yields of PSII photochemistry, decreased photochemical quenching and photosynthetic rate. Data also showed influence on the primary quinone acceptor (QA) reoxidation, which led to the restriction of the electron flow from QA to plastoquinone and stimulation of the cyclic electron flow. The possible reasons for the increased effects of the light stress under conditions of high salt concentration in soil for Paulownia tomentosa × fortunei are discussed.  相似文献   

6.
Ameliorative effects of Trichoderma harzianum (Th-6) on monocot crops under saline environment using hydroponic system were examined. Both rice and maize seeds were coated with T. harzianum (Th-6) and used for the saline and non-saline treatment. Germination and seedling growth performance were studied. T. harzianum (Th-6)-treated seeds showed constantly faster and more uniform germination as compared to untreated seeds. Moreover, seeds treated with Trichoderma improved plants’ growth and physiological performance under hydroponic saline environment compared to control. The treatments showed higher relative water content (RWC), dark-adapted quantum yield (F v/F m ratio), performance index (PIABS), photochemical quenching (q P), stomatal conductance (g s), pigments concentrations and antioxidant enzymes as compared to untreated saline environment. Application of endophyte inhibited the Na+ and Cl? ion uptake in leaves when plants were exposed to saline environment. However, H2O2 contents of both treated crops declined under hydroponic salt stress environment. Physiological mechanism of T. harzianum (Th-6) application in mitigating the salt-related consequences of both monocot crops was discussed.  相似文献   

7.
This study was performed to understand the mechanisms for Se-enhanced resistance of parsley (Petroselinum crispum L.) plants to salinity stress. Plant growth was negatively affected by salt stress; however, Se treatments at 1 mg/L significantly improved the growth rate and enhanced the salt tolerance of seedlings. This increased tolerance in Se-supplied plants was obtained by reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v/F m) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). The performance index (PIABS), as evidence for modulation of PSII function, was downregulated by salt stress; while Se mitigated this effect. Moreover, analysis of OJIP transients demon-strated that Se reduced salt damaging effect on PSII function through improvement of excitation energy trapping (TR0/CS) and electron transport (ET0/CS) per excited cross-section of leaf. The Na concentrations in shoots and roots of parsley seedlings considerably enhanced after NaCl treatment. Interestingly, treatment of salt-stressed plants with Se decreased the Na contents in shoots via the limitation of the root-to-shoot translocation of Na and exclusion of Na from cell sap, as well as the retention of K/Na and Ca/Na ratios. These data provide the first evidence that the Se application alleviates salinity stress by enhancing PSII function and by decreasing Na content in the shoot via binding of Na to the root cell wall.  相似文献   

8.
Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.  相似文献   

9.
The amino acid sequence of APX4 is similar to other ascorbate peroxidases (APXs), a group of proteins that protect plants from oxidative damage by transferring electrons from ascorbate to detoxify peroxides. In this study, we characterized two apx4 mutant alleles. Translational fusions with GFP indicated APX4 localizes to chloroplasts. Both apx4 mutant alleles formed chlorotic cotyledons with significantly reduced chlorophyll a, chlorophyll b and lutein. Given the homology of APX to ROS-scavenging proteins, this result is consistent with APX4 protecting seedling photosystems from oxidation. The growth of apx4 seedlings was stunted early in seedling development. In addition, APX4 altered seed quality by affecting seed coat formation. While apx4 seed development appeared normal, the seed coat was darker and more permeable than the wild type. In addition, accelerated aging tests showed that apx4 seeds were more sensitive to environmental stress than the wild-type seeds. If APX4 affects seed pigment biosynthesis or reduction, the seed coat color and permeability phenotypes are explained. apx4 mutants had cotyledon chlorosis, increased H2O2 accumulation, and reduced soluble APX activity in seedlings. These results indicate that APX4 is involved in the ROS-scavenging process in chloroplasts.  相似文献   

10.
11.
Six perennial species endemic to South West Western Australia (Acacia trulliformis, Austrostipa geoffreyi, Banksia oligantha, B. mucronulata, Hakea tuberculata and Orthrosanthus muelleri) were screened for salt tolerance and recovery during seed germination. Growth and survival of 6-month old seedlings of these six plus a further vegetatively propagated species (Myoporum turbinatum) were subsequently examined in response to salt and waterlogging application. Water uptake under elevated saline conditions (200 and 400 mM NaCl) was slow, but not restrictive to germination. Moreover, a large proportion of seeds that were unable to germinate under saline conditions recovered after being transferred to non-saline conditions. Germination, growth and survival varied with species and the salt concentration used. Increasing salt concentrations tended to increase time to germination. Germination of Acacia trulliformis seeds declined exponentially with increasing salinity, and seedlings suffered reduced growth under saline and non-saline waterlogging. Austrostipa geoffreyi seeds were sensitive to saline treatments but seedlings were highly tolerant of both saline and/or waterlogged conditions. Germination of the three proteaceous species declined significantly under highly saline conditions (400 mM NaCl) with seedlings of the two Banksia species not surviving any treatment with the exception of non-saline waterlogging. Seedlings of H. tuberculata were more resilient to treatment conditions. Orthrosanthus muelleri was sensitive to salt stress during germination but was highly resistant to waterlogging, both saline and non-saline. This study provides an insight into the response and resilience of components of the vegetation understorey of saline-affected regions of Western Australia not usually evaluated allowing for more informed restoration.  相似文献   

12.
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.  相似文献   

13.
More than 20% of irrigated land has been influenced by salt stress, decreasing crop production. In this research, we investigated the effect of different levels of salinity (0, 50, 100 and 150 mM NaCl) and the efficiency of Piriformospora indica on growth, biochemical traits, antioxidative defense system in tomato (Solanum lycopersicum L.). NaCl stress reduced chlorophyll content, height and biomass of plants. Higher level of salinity (150 mM) declined the plant height by 22.65%, total dry weight by 56.44% and total chlorophyll by 44.34%, however, P. indica inoculation raised plant height by 43.47%, dry weight by 69.23% and total chlorophyll content by 48.09%. Salinity stress increased H2O2, malondialdehyde (MDA), superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) level in leaves and roots tomato seedlings. However, P. indica inoculation reduced H2O2, MDA and superoxide anion and enhanced DPPH compared to non-inoculated plants at all NaCl levels. The total phenol and flavonoids increased with NaCl treatment. On the other hand, the total phenolic and flavonoid increased more in P. indica inoculated plants compared to non-inoculated ones. Moreover, inoculation of P. indica implicated noteworthy improvement of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) activity in tomato upon salinity. Notably, colonization with P. indica significantly improved the content of reduced ascorbic acid (AsA), glutathione (GSH) and redox ratio in the tomato plants under salinity resulting in reduced redox state. Our findings confirmed that salinity had negative effect on tomato seedling; however, P. indica inoculation increased tolerance to salinity by improving the content of phenolic compounds, non-enzymatic antioxidants, and increasing the activity of antioxidant enzymes.  相似文献   

14.
15.
Senna obtusifolia L. is an important medicinal plant in Asia. This study was the first report on the genetic diversity and population structure of S. obtusifolia which were collected from 47 geographic populations widespread in China. Inter-Simple Sequence Repeat (ISSR) and Start Codon Target Polymorphism (SCoT) combined with seeds morphological traits were used to investigate the relationship of 47 populations. 11 ISSR primers yielded 98 polymorphic bands with 81.67% polymorphism. 24 SCoT primers yielded 267 polymorphic bands with 89.59% polymorphism. The number of allele (Na), the number of effective allele (Ne), Nei’s diversity index (H), and Shannon’s information index (I) reflected a high level of genetic diversity of S. obtusifolia species. The greatest genetic distance (G D) existed between Southwest and Northwest (0.4022ISSR/0.5019SCoT), while the Eastern and Northern showed the least genetic distance (0.1751ISSR/0.2186SCoT). The genetic differentiation (Gst) was 0.4875ISSR/0.4434SCoT, and the gene flow (Nm) was 0.5256ISSR/0.6275SCoT, which indicated that gene exchange among four regions was limited. 47 samples were divided into four clusters mainly according to their geographic distribution through clustering and structure analysis. The analysis on the combined data of ISSR and SCoT showed more reliable and superior results than single analysis of ISSR and SCoT. This study explored the effectiveness of ISSR and SCoT markers to evaluate the genetic diversity and population structure of S. obtusifolia and provided useful information for S. obtusifolia germplasm research and breeding program.  相似文献   

16.
Pistachio (Pistacia vera L.) has a high tolerance to drought and soil salinity. Although adult pistachio trees are well known to be drought tolerant, the studies on physiological adaptation of pistachio cultivars to drought are limited. Therefore, three pistachio cultivars, i.e., Akbari, Kaleghochi, and Ohadi were subjected to three osmotic drought stress treatments: control (?0.1 MPa), moderate (?0.75 MPa) and severe drought (?1.5 MPa) stress using PEG 6000 for a 14-day period. All drought stress treatments decreased net photosynthesis (P n), stomatal conductance (g s), intercellular CO2 concentration (C i), and transpiration rate (E), but Ohadi maintained better its photosynthetic capacity compared to Akbari and Kaleghochi. Maximum quantum yield of PSII photochemistry (F v /F m), effective PSII quantum yield (ΦPSII) and photochemical quenching (qP) were also reduced. The chlorophyll fluorescence parameters indicated that Akbari was more susceptible to the applied drought stress. Drought stress levels decreased chlorophyll pigments, fresh weight, stem elongation, leaf nitrogen content (N), leaf water potential and increased water use efficiency (WUE). Proline increased strongly under drought stress for Akbari. After 2 weeks of stress a recovery of 2 weeks was applied. This period was insufficient to fully restore the negative effects of the applied stress on the studied cultivars. Based on the reduction of photosynthesis and the increase of the proline content Akbari seems more sensitive to the applied drought stress.  相似文献   

17.
Salt stress inhibited the growth of both tasg1 and wild-type (WT) wheat seedlings, but the inhibition in tasg1 plants was relatively weaker than that of WT. Compared to the WT, the chlorophyll content, thylakoid membrane polypeptides, Hill reaction activity, actual photochemical efficiency of PSII (ΦPSII), and Mg2+- and Ca2+-ATPase activities were higher in tasg1 under salt stress. At the same time, the photosynthetic activity of the tasg1 was significantly higher than that of WT. In addition, tasg1 plants displayed relatively less accumulation of reactive oxygen species and oxidative damage accompanied by higher activity of some antioxidant enzymes, and the up-regulation of antioxidant genes further demonstrated the improvement of antioxidant activity in tasg1 under salt stress. Furthermore, tasg1 plants also showed relatively weaker Na+ fluorescence and lower Na+ content, but relatively higher content of K+ in their roots and shoots, and then, the roots of tasg1 plants enhanced net outward Na+ flux and a correspondingly increased net inward K+ flux during salt stress. This might be associated with the relatively higher activity of H+-ATPase in tasg1 plants. These results suggest that the improved antioxidant competence and Na+/K+ ion homeostasis play an important role in the enhanced salinity tolerance of tasg1 plants.  相似文献   

18.
The present study aimed to determine effects of drought stress on Lycium ruthenicum Murr. seedlings. Our results showed that mild drought stress was beneficial to growth of L. ruthenicum seedlings. Their height, basal diameter, crown, leaf number, stem dry mass, leaf and root dry mass increased gradually when the soil water content declined from 34.7 to 21.2%. However, with further decrease of the soil water content, the growth of L. ruthenicum seedlings was limited. After 28 d of treatment, the seedlings were apparently vulnerable to drought stress, which resulted in significant leaf shedding and slow growth. However, growth was restored after rehydration. Drought treatments led to a decrease in contents of chlorophyll (Chl) a, b, and Chl (a+b) and increase in the Chl a/b ratio. After rewatering, the Chl content recovered to the content of the control plants. Under drought stress, minimal fluorescence and nonphotochemical quenching coefficient increased, thereby indicating that L. ruthenicum seedlings could protect PSII reaction centres from damage. Maximum fluorescence, maximum quantum yield, actual quantum yield of PSII photochemistry, and photochemical quenching decreased, which suggested that drought stress impacted the openness of PSII reaction centres. A comparison of these responses might help identify the drought tolerance mechanisms of L. ruthenicum. This could be the reference for the planting location and irrigation arrangements during the growing period of L. ruthenicum.  相似文献   

19.
To increase crop yields and not to compete for land with food crops, intercropping agricultural cultivation approach was introduced into cultivation of peanut (Arachis hypogaca L.). This approach improves the total yield of the crop per unit area, but decreases the yield of a single crop compared with mono-cropped agricultural cultivation approach. In wheat-peanut relay intercropping system, peanut plants would suffer heat and high light (HI) stress after wheat harvest. In the present work, peanut seedlings were cultivated in low light to simulate wheat-peanut relay intercropping environments. Upon exposure to heat and HI stress, energy dissipation in PSII complexes was evaluated by comparing those cultivated in low irradiance conditions with the mono-cropped peanut. The maximal photochemical efficiency of PSII (Fv/Fm) and the net photosynthetic rate (Pn) decreased markedly in relay-cropped peanut (RP) after heat and HI stress, accompanied by higher degree of PSII reaction center closure (1–qP). After heat and HI stress, higher antioxidant enzyme activity and less ROS accumulation were observed in mono-cropped peanut (MP) seedlings. Meanwhile, higher content of D1 protein and higher ratio of (A + Z)/(V + A + Z) were also detected in MP plants under such stress. These results implied that heat and HI stress could induce photoinhibition of PSII reaction centers in peanut seedlings and both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system were down-regulated in RP compared to classical monocropping systems after heat and high irradiance stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号