首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Low temperatures limit plant growth, development, and reproductive success. A series of complex adaptive responses in plants evolved to withstand this environmental challenge. Here, eight accessions of Elymus nutans, which originated in Tibet at altitudes between 3720 and 5012 m above sea level, were used to identify heritable adaptations to chilling stress. Dynamic responses of phytohormone, sugar, and gene expression levels related to chilling tolerance were analyzed. During the initial stage of chilling stress (0–24 h), some high-altitude E. nutans accessions exhibited rapid increases in abscisic acid (ABA), jasmonic acid (JA), and zeatin content. This coordinated with decreases in the levels of auxin (IAA), salicylic acid (SA), gibberellins (GA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). EnCBF9 and EnCBF14 expression in the high-altitude accessions, Baqing, Xainza, Damxung, and Ali, increased within 1 h of chilling exposure, while chilling induction of EnCOR14a was detected after 3 h of chilling stress. Accessions from high altitudes displayed an increased sucrose and raffinose accumulation and a reduced degradation of chlorophyll under chilling stress. After 24–120 h of chilling exposure, plant adaptation to the chilling treatment was associated with a lower accumulation of ABA and moderate rise of zeatin, IAA, GA, ACC, SA, and JA. EnCBF9, EnCBF14, and EnCOR14a genes were down-regulated during the late stage of chilling stress. Taken together, the dynamic responses of phytohormones and sugars, and the higher expression of the EnCBFs and EnCOR genes play critical roles in the acclimation to chilling in high-altitude accessions of E. nutans, thereby allowing them to achieve higher chilling tolerance.  相似文献   

4.
5.

Key message

JrGSTTau1 is an important candidate gene for plant chilling tolerance regulation.

Abstract

A tau subfamily glutathione S-transferase (GST) gene from Juglans regia (JrGSTTau1, GeneBank No.: KT351091) was cloned and functionally characterized. JrGSTTau1 was induced by 16, 12, 10, 8, and 6 °C stresses. The transiently transformed J. regia showed much greater GST, glutathione peroxidase (GPX), superoxide dismutase (SOD), and peroxidase (POD) activities and lower H2O2, malondialdehyde (MDA), reactive oxygen species (ROS), and electrolyte leakage (EL) rate than prokII (empty vector control) and RNAi::JrGSTTau1 under cold stress, indicating that JrGSTTau1 may be involved in chilling tolerance. To further confirm the role of JrGSTTau1, JrGSTTau1 was heterologously expressed in tobacco, transgenic Line5, Line9, and Line12 were chosen for analysis. The germinations of WT, Line5, Line9, and Line12 were similar, but the fresh weight, primary root length, and total chlorophyll content (tcc) of the transgenic lines were significantly higher than those of WT under cold stress. When cultivated in soil, the GST and SOD activities of transgenic tobacco were significantly higher than those of WT; however, the MDA and H2O2 contents of WT were on average 1.47- and 1.96-fold higher than those of Line5, Line9, and Line12 under 16 °C. The DAB, Evans blue, and PI staining further confirmed these results. Furthermore, the abundances of NtGST, MnSOD, NtMAPK9, and CDPK15 were elevated in 35S::JrGSTTau1 tobacco compared with WT. These results suggested that JrGSTTau1 improves the plant chilling tolerance involved in protecting enzymes, ROS scavenging, and stress-related genes, indicating that JrGSTTau1 is a candidate gene for the potential application in molecular breeding to enhance plant abiotic stress tolerance.
  相似文献   

6.
After analyzing tomato plants transformed with GalUR gene for their ascorbic acid contents, it was found that some transgenic lines contained higher levels of ascorbic acid compared to control plants. In the present study, callus induction rate was 50.2 % in the explant and shoot regeneration rate was 51.5 % from the callus with transformation efficiency of 3.0 %. Based on PCR and Southern blot analysis, three independent transformants containing the insert gene were selected. Phenotypic traits of these transgenic progeny were similar to those of control tomatoes. Tomatoes (H15) with high fruit ascorbic acid contents were selected for next generation (GalUR T3) analysis. Transgenic tomatoes with increased ascorbic acid contents were found to be more tolerant to abiotic stresses induced by viologen, NaCl, or mannitol than non-transformed plants. In leaf disc senescence assay, the tolerance of these transgenic plants was better than control plants because they could retain higher chlorophyll contents. Under salt stress of less than 200 mM NaCl, these transgenic plants survived. However, control plants were unable to survive such high salt stress. Ascorbic acid contents in the transgenic plants were inversely correlated with MDA contents, especially under salt stress conditions. The GalUR gene was expressed in H15 tomatoes, but not in control plants. Higher expression levels of antioxidant genes (APX and CAT) were also found in these transgenic plants compared to that in the control plants. However, no detectable difference in SOD expression was found between transgenic plants and control plants. Results from this study suggest that the increase in ascorbic acid contents in plants could up-regulate the antioxidant system to enhance the tolerance of transgenic tomato plants to various abiotic stresses.  相似文献   

7.
8.
9.
10.
11.
The tomato leaf miner, Tuta absoluta (Meyrick), is a devastating pest of tomato worldwide. One of the control measures of T. absoluta is the use of biological control agents, such as Trichogramma wasps. Interactions between natural enemies and insect pests may be affected by application of fertilizers, because changes in plant quality through the fertilizer application may therefore affect herbivore characteristics and suitability of them to parasitism. Laboratory tests were carried out to evaluate the life table parameters of Trichogramma brassicae Bezdenko on T. absoluta eggs reared on tomato plants treated either with vermicompost (40%), humic fertilizer (2 g/kg soil), or control (suitable mixture of field soil and sand). Population growth parameters of T. brassicae were affected by fertilizer treatments. Significant differences were found for immature life period and total fecundity of T. brassicae on the treatments. Differences of intrinsic rate of natural increase (r m), finite rate of increase (λ), net reproductive rate (R 0), mean generation time (T), and doubling time (DT) of T. brassicae among treatments were also significant. The lowest values of r m, λ, and R 0 were recorded for T. brassicae developed on T. absoluta eggs on control treatment, whereas the highest values of these parameters were observed on 2 g/kg humic fertilizer. Furthermore, T. brassicae had the shortest T and DT values on 2 g/kg humic fertilizer and 40% vermicompost treatments. Our results showed that application of humic fertilizer and vermicompost could positively affect population growth parameters of T. brassicae on eggs of T. absoluta fed on tomato plants.  相似文献   

12.
Herein, we report isolation of the AlTMP2 gene from the halophytic C4 grass Aeluropus littoralis. The subcellular localization suggested that AlTMP2 is a plasma membrane protein. In A. littoralis exposed to salt and osmotic stresses, the AlTMP2 gene was induced early and at a high rate, but was upregulated relatively later in response to abscisic acid and cold treatments. Expression of AlTMP2 in tobacco conferred improved tolerance against salinity, osmotic, H2O2, heat, and freezing stresses at the germination and seedling stages. Under control conditions, no growth or yield penalty were mentioned in transgenic plants due to the constitutive expression of AlTMP2. Interestingly, under greenhouse conditions, the seed yield of transgenic plants was significantly higher than that of non-transgenic (NT) plants grown under salt or drought stress. Furthermore, AlTMP2 plants had less electrolyte leakage, higher membrane stability, and lower Na+ and higher K+ accumulation than NT plants. Finally, six stress-related genes were shown to be deregulated in AlTMP2 plants relative to NT plants under both control and stress conditions. Collectively, these results indicate that AlTMP2 confers abiotic stress tolerance by improving ion homeostasis and membrane integrity, and by deregulating certain stress-related genes.  相似文献   

13.
The cuticle, composed primarily of wax and cutin, covers most plant aerial surfaces and plays a vital role in interactions between plants and their environment. Some ATP-binding cassette G subfamily (ABCG) members are involved in cuticular lipid molecule exportation to outside in the plant surface. Thellungiella salsugineum, a relative of Arabidopsis thaliana with a heavy cuticle, has extreme stress tolerance. TsABCG11, an ABCG transporter was cloned (GenBank accession number JQ389853), and its structure was studied. qRT-PCR showed that TsABCG11 expression varied in different organs of T. salsugineum and was upregulated under ABA, NaCl, drought and cold conditions. The rosette leaves from 4-week-old TsABCG11 overexpressed (OE) Arabidopsis plants displayed lower rates of water loss and decreased chlorophyll-extracted rates compared to wild-type plants. TsABCG11-OE plants also exhibited significantly increased total cuticular wax and cutin monomer amounts, mainly due to prominent changes in the C29, C31, and C33 alkanes in the wax and C18:2 dioic in cutin monomers, respectively. TsABCG11-OE seedlings exhibit lower root growth inhibition under 100 mM of NaCl or 1 µM of ABA than the wild type. Four-week-old TsABCG11-OE plants exhibited higher photosynthetic rates and water-use efficiency under cold stress (4 °C) than control plants. These results indicate that TsABCG11 plays an important role in cuticle lipid exportation and is involved in abiotic stresses, probably having a close relationship with extreme stress tolerance in T. salsugineum.  相似文献   

14.
The physiological and anatomical responses of different concentrations (0.0, 0.5, 1.0, 2.0 and 4.0 mM sodium silicate) of Si foliar-application in improving the chilling tolerance of Dendrocalamus brandisii plantlets were investigated. The Si-supplemented D. brandisii plantlets exhibited better chilling tolerance, associated with the enhancement of photosynthetic pigment and soluble sugar and starch content, increasing CAT and SOD activities and decreasing MDA and H2O2 level, as well as thicker leaf blades and mesophyll tissues. Furthermore, distinct changes in phytolith morphology were observed, including formation of a new phytolith morphotype (dumb-bell with nodular shark), significantly higher frequency of elongated phytoliths, and the increased length of elongated and elliptical phytoliths. Results indicated the physiological and anatomical response showed weak positive linkage with increasing amount of silicon applied, and the 1.0 mM sodium silicate on D. brandisii plantlet leaves was the most effective treatment in enhancing chilling tolerance.  相似文献   

15.
A long growing season, mediated by the ability to grow at low temperatures early in the season, can result in higher yields in biomass of crop Miscanthus. In this paper, the chilling tolerance of two highly productive Miscanthus genotypes, the widely planted Miscanthus × giganteus and the Miscanthus sinensis genotype ‘Goliath’, was studied. Measurements in the field as well as under controlled conditions were combined with the main purpose to create basic comparison tools in order to investigate chilling tolerance in Miscanthus in relation to its field performance. Under field conditions, M. × giganteus was higher yielding and had a faster growth rate early in the growing season. Correspondingly, M. × giganteus displayed a less drastic reduction of the leaf elongation rate and of net photosynthesis under continuous chilling stress conditions in the growth chamber. This was accompanied by higher photochemical quenching and lower nonphotochemical quenching in M. × giganteus than that in M. sinensis ‘Goliath’ when exposed to chilling temperatures. No evidence of impaired stomatal conductance or increased use of alternative electron sinks was observed under chilling stress. Soluble sugar content markedly increased in both genotypes when grown at 12°C compared to 20°C. The concentration of raffinose showed the largest relative increase at 12°C, possibly serving as a protection against chilling stress. Overall, both genotypes showed high chilling tolerance for C4 plants, but M. × giganteus performed better than M. sinensis ‘Goliath’. This was not due to its capacity to resume growth earlier in the season but rather due to a higher growth rate and higher photosynthetic efficiency at low temperatures.  相似文献   

16.
17.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

18.
19.
Calmodulin (CaM) is a highly conserved calcium sensor protein associated with chilling tolerance in living organisms. It has four EF-hand domains for binding of four Ca2+, two of them located in the N-terminus, and the other two in the C-terminus. A notothenioid CaM gene fragment (CaMm), which only codes for N-terminus of CaM (with two EF-hand domains), was introduced into Nicotiana benthamiana. Effects of its overexpression on chilling tolerance in plants were explored. During 4?C or 0?C chilling treatment, both CaMm and CaM transgenic plants showed higher PSII maximum quantum yield, actual quantum yield, and soluble protein content, lower electrolyte leakage and malondialdehyde content than that of the control. The changes in these physiological indices were comparable between the CaMm and CaM transgenic plants during the treatments. These results indicate that the N-terminus of calmodulin is likely the key functional domain involved in the adaptive response to cold stress.  相似文献   

20.
Infection of field-maintained parthenocarpic Solanum lycopersicum L. (tomato) plants with Tomato yellow leaf curl virus provided the motivation to preserve the germplasm by in vitro methods. In this study, a method for medium-term in vitro conservation of parthenocarpic tomato plants was established. As a preliminary study, the non-parthenocarpic tomato ‘Momotaro’ was used to obtain a number of uniform explants for vegetative propagation under aseptic conditions at 23°C. The modification of sucrose or mannitol concentrations in the medium alone was insufficient for the slow-growth storage of shoot cultures. In contrast, temperature had a considerable effect on the time of conservation. ‘Momotaro’ shoot cultures were pre-cultured with Murashige and Skoog (MS) medium supplemented with 2% (w/v) sucrose at 23°C for 6 d for rooting and were then stored at 10°C for further conservation. When maintained at 10°C, only 27% of the shoot cultures needed subculture even after 3 mo, whereas 100% of plants needed subculturing after approximately 2 wk., when conserved at 23°C. When the same method was used with parthenocarpic tomatoes, plants were successfully conserved at 10°C without subculture for approximately 9 mo. Moreover, field performance and genetic stability of the stored tomato plants were assessed. This newly developed method allows for easy and efficient medium-term in vitro conservation to maintain virus-free parthenocarpic tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号