首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation examined the role of estrogen receptor (ER) on the stimulatory effect of estradiol (E2) on protein phosphorylation in the oviduct as well as on E2-induced acceleration of oviductal oocyte transport in cyclic rats. Estrous rats were injected with E2 s.c. and with the ER antagonist ICI 182 780 intrabursally (i.b.), and 6 h later, oviducts were excised and protein phosphorylation was determined by Western blot analysis. ICI 182 780 inhibited the E2-induced phosphorylation of some oviductal proteins. Other estrous rats were treated with E2 s.c. and ICI 182 780 i.b. The number of eggs in the oviduct, assessed 24 h later, showed that ICI 182 780 blocked the E2-induced egg transport acceleration. The possible involvement of adenylyl cyclase, protein kinase A (PK-A), protein kinase C (PK-C), or tyrosine kinases on egg transport acceleration induced by E2 was then examined. Selective inhibitors of adenylyl cyclase or PK-A inhibited the E2-induced egg transport acceleration, whereas PK-C or tyrosine kinase inhibitors had no effect. Furthermore, forskolin, an adenylyl cyclase activator, mimicked the effect of E2 on ovum transport and E2 increased the level of cAMP in the oviduct of cycling rats. Finally, we measured PK-A activity in vitro in the presence of E2 or E2-ER complex. Activity of PK-A in the presence of E2 or E2-ER was similar to PK-A alone, showing that E2 or E2-ER did not directly activate PK-A. We conclude that the nongenomic pathway by which E2 accelerates oviductal egg transport in the rat requires absolute participation of ER and cAMP and partial participation of PK-A signaling pathways in the oviduct.  相似文献   

2.
Estradiol (E2) accelerates oviductal egg transport through nongenomic pathways involving oviductal protein phosphorylation in non-mated rats, and through genomic pathways in mated rats. Here we investigated the ability of cervico-vaginal stimulation (CVS) to switch the mode of action of E2 in the absence of other male-associated components. Pro-estrous rats were subjected to CVS with a glass rod and 12 hours later were injected subcutaneously with E2 and intrabursally with the RNA synthesis inhibitor Actinomycin D or the protein phosphorylation inhibitor H-89. The number of eggs in the oviduct, assessed 24 h later, showed that Actinomycin D, but not H-89 blocked the E2-induced egg transport acceleration. This clearly indicates that CVS alone, without other mating-associated signals, is able to shift E2 signaling from nongenomic to genomic pathways. Since mating and CVS activate a neuroendocrine reflex that causes iterative prolactin (PRL) surges, the involvement of PRL pathway in this phenomenon was evaluated. Prolactin receptor mRNA and protein expression in the rat oviduct was demonstrated by RT-PCR and Western blot, but their levels were not different on day 2 of the cycle (C2) or pregnancy (P2). Activated ST AT 5a/b (phosphorylated) was detected by Western blot on P2 in the ovary, but not in the oviduct, showing that mating does not stimulate this PRL signalling pathway in the oviduct. Other rats subjected to CVS in the evening of pro-estrus were treated with bromoergocriptine to suppress PRL surges. In these rats, H-89 did not block the E2-induced acceleration of egg transport suggesting that PRL surges are not essential to shift E2 signaling pathways in the oviduct. We conclude that CVS is one of the components of mating that shifts E2 signaling in the oviduct from nongenomic to genomic pathways, and this effect is independent of PRL surges elicited by mating.  相似文献   

3.
K K Hui  J L Yu 《Life sciences》1990,47(4):269-281
The objective of the present study was to investigate the roles of protein kinase A and/or C in agonist-induced beta adrenoceptor activation in intact human lymphocytes. LYmphocytes from healthy subjects were incubated with isoproterenol and phosphodiesterase inhibitor (IBMX, 1.0 mM) after 20 minutes of preincubation with (or without) various compounds possessing protein kinase A and/or C inhibitory activities. These compounds included the relatively selective protein kinase C (PK-C) inhibitors (W-7, calmidazolium, polymyxin B, neomycin, tamoxifen and clomiphene), purified protein inhibitors of protein kinase A (PK-A) (obtained synthetically, or purified from bovine hearts and porcine hearts) and the two compounds (H-7, H-9), which have been found to inhibit both PK-A and PK-C. The results showed that all PK-C inhibitors alone decreased cellular basal cAMP levels while inhibitors of PK-A as well as both H-7 and H-9 increased basal cAMP levels in a dose dependent manner at certain concentrations. All inhibitors studied potentiated isoproterenol-induced cAMP accumulation. The protein kinase A and C inhibitor, H-7, also potentiated PGE1 (but not forskolin)-induced cAMP accumulation. In contrast, the protein kinase C activator, PMA, inhibited isoproterenol- and PGE1- (but not forskolin) induced cAMP accumulation. These data suggest that the potentiating effects of PK-A and/or C inhibitors may be related to the inhibition of PK-A and/or PK-C, both of which have been shown to be involved in beta 2 adrenoceptor desensitization and phosphorylation.  相似文献   

4.
Estradiol (E(2)) accelerates oviductal egg transport through intraoviductal nongenomic pathways in cyclic rats and through genomic pathways in pregnant rats. This shift in pathways, which we have provisionally designated as intracellular path shifting (IPS), is caused by mating-associated signals and represents a novel and hitherto unrecognized phenomenon. The mechanism underlying IPS is currently under investigation. Using microarray analysis, we identified several genes the expression levels of which changed in the rat oviduct within 6 hours of mating. Among these genes, the mRNA level for the enzyme catechol-O-methyltransferase (COMT), which produces methoxyestradiols from hydroxyestradiols, decreased 6-fold, as confirmed by real-time PCR. O-methylation of 2-hydroxyestradiol was up to 4-fold higher in oviductal protein extracts from cyclic rats than from pregnant rats and was blocked by OR486, which is a selective inhibitor of COMT. The levels in the rat oviduct of mRNA and protein for cytochrome P450 isoforms 1A1 and 1B1, which form hydroxyestradiols, were detected by RT-PCR and Western blotting. We explored whether methoxyestradiols participate in the pathways involved in E(2)-accelerated egg transport. Intrabursal application of OR486 prevented E(2) from accelerating egg transport in cyclic rats but not in pregnant rats, whereas 2-methoxyestradiol (2ME) and 4-methoxyestradiol mimicked the effect of E(2) on egg transport in cyclic rats but not in pregnant rats. The effect of 2ME on egg transport was blocked by intrabursal administration of the protein kinase inhibitor H-89 or the antiestrogen ICI 182780, but not by actinomycin D or OR486. We conclude that in the absence of mating, COMT-mediated formation of methoxyestradiols in the oviduct is essential for the nongenomic pathway through which E(2) accelerates egg transport in the rat oviduct. Yet unidentified mating-associated signals, which act directly on oviductal cells, shut down the E(2) nongenomic signaling pathway upstream and downstream of methoxyestradiols. These findings highlight a physiological role for methoxyestradiols in the female genital tract, thereby confirming the occurrence of and providing a partial explanation for the mechanism underlying IPS.  相似文献   

5.
Steroid regulation of retinol-binding protein in the ovine oviduct   总被引:5,自引:0,他引:5  
Two studies were conducted to identify retinol-binding protein (RBP) expression in the ovine oviduct and to determine the role of ovarian steroids in its regulation. Ewes were salpingectomized on Days 1, 5, or 10 of their respective estrous cycles, and oviducts were homogenized for RNA analysis, fixed for immunocytochemistry (ICC), or cultured for 24 h for protein analysis. ICC localized RBP to the epithelium of all oviducts. RBP synthesis was demonstrated by immunoprecipitation of radiolabeled RBP from the medium of oviductal explant cultures. Explant culture medium from oviducts harvested on Day 1 contained significantly more RBP than medium from oviducts collected on Days 5 or 10. Slot-blot analysis demonstrated that steady-state RBP mRNA levels were significantly higher on Day 1 than Day 5 or 10. In the second experiment, ovariectomized ewes were treated with estradiol-17beta (E2), progesterone (P4), E2+P4 (E2+P4), or vehicle control, and oviducts were analyzed as above. P4 alone or in combination with E2 significantly reduced steady-state RBP mRNA levels compared to those in E2-treated animals. Oviductal explants from E2- and E2+P4-treated animals released 3- to 5-fold more RBP into the medium than control and P4 treatments as determined by ELISA. RBP synthesis of metabolically labeled RBP was increased by E2 and E2+P4 treatments. This study demonstrates that P4 applied on an estradiol background negatively regulates RBP gene expression in the oviduct whereas estradiol appears to stimulate RBP synthesis and secretion.  相似文献   

6.
Previously, we found that the dose of estradiol (E2) required to accelerate egg transport increases 5- to 10-fold, in mated compared to cyclic rats. Here we examined protein synthesis in the oviduct of mated and cyclic rats following a single injection of E2 known to accelerate oviductal egg transport or after concomitant treatment with progesterone (P4) known to block this acceleration. On Day 1 of the cycle or pregnancy, E2, P4, or E2 + P4 were injected s.c., and 4 h later oviducts were removed and incubated for 8 h in medium with 35S-methionine. Tissue proteins were separated by SDS-PAGE, and protein bands were quantitated by fluorography and densitometry. In mated rats, E2 and P4 increased different protein bands and P4 did not affect the fluorographic pattern induced by E2. In contrast with mated rats, none of these treatments changed the fluorographic pattern of the oviductal proteins in cyclic rats. Estradiol-induced egg transport acceleration was then compared under conditions in which oviductal protein synthesis was suppressed. Mated and cyclic rats treated with equipotent doses of E2 for accelerating egg transport also received actinomycin D (Act D) locally. Estradiol-induced oviductal egg loss was partially blocked by Act D in mated but had no effect in cyclic rats. We conclude that the oviduct of mated and cyclic rats differs in that only the former responds with increased protein synthesis to a pulse of exogenous E2 and P4 and requires an intact protein synthesis machinery in order to accelerate egg transport in response to E2.  相似文献   

7.
These studies describe a cytoskeletal-associated protein kinase activity in astrocytes that phosphorylated the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin and that appeared to be distinct from protein kinase C (PK-C) and the cyclic AMP-dependent protein kinase (PK-A). The cytoskeletal-associated kinase activity phosphorylated intermediate filament proteins in the presence of 10 mM MgCl2 and produced an even greater increase in 32P incorporation into these proteins in the presence of calcium/calmodulin. Tryptic peptide mapping of phosphorylated intermediate filament proteins showed that the intermediate filament protein kinase activity produced unique phosphopeptide maps, in both the presence and the absence of calcium/calmodulin, as compared to that of PK-C and PK-A, although there were some common sites of phosphorylation among the kinases. In addition, it was determined that the intermediate filament protein kinase activity phosphorylated both serine and threonine residues of the intermediate filament proteins, vimentin and GFAP. However, the relative proportion of serine and threonine residues phosphorylated varied depending on the presence or absence of calcium/calmodulin. The magnesium-dependent activity produced the highest proportion of threonine phosphorylation, suggesting that the calcium/calmodulin-dependent kinase activity acts mainly at serine residues. PK-A and PK-C phosphorylated mainly serine residues. Also, the intermediate filament protein kinase activity phosphorylated both the N-and the C-terminal domains of vimentin and the N-terminal domain of GFAP. In contrast, both PK-C and PK-A are known to phosphorylate the N-terminal domains of both proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
《The Journal of cell biology》1989,109(6):3105-3114
Basic fibroblast growth factor (FGF) is synthesized as a phosphoprotein by both bovine capillary endothelial and human hepatoma cells in culture. Because basic FGF is characterized by its high affinity for heparin and its association in vivo with the extracellular matrix, we examined the possibility that the phosphorylation of this growth factor by purified protein kinase C (PK-C) and the catalytic subunit of cAMP- dependent protein kinase-A (PK-A) can be modulated by components of the extracellular matrix. Heparin and other glycosaminoglycans (GAGs) inhibit the ability of PK-C to phosphorylate basic FGF. In contrast, heparin can directly increase the phosphorylation of basic FGF by PK-A. While fibronectin, laminin, and collagen IV have no effect on the ability of PK-C to phosphorylate basic FGF, they all can inhibit the effects of PK-A. Thus, there is a differential effect of extracellular matrix-derived proteins and GAGs on the phosphorylation of basic FGF. The enhanced phosphorylation of basic FGF that is mediated by heparin is associated with a change in the kinetics of the reaction and the identity of the amino acid targeted by this enzyme. The amino acids that are targeted by PK-C and PK-A have been identified by phosphopeptide analyses as Ser64 and Thr112, respectively. In the presence of heparin, basic FGF is no longer phosphorylated by PK-A at the usual PK-A consensus site (Thr112), but instead is phosphorylated at the canonical PK-C site (Ser64). Accordingly, heparin inhibits the phosphorylation of basic FGF by PK-C presumably by masking the PK-C dependent consensus sequence surrounding Ser64. Thus, when basic FGF is no longer phosphorylated by PK-A in the receptor binding domain (Thr112), it loses the increased receptor binding ability that characterizes PK-A phosphorylated basic FGF. The results presented here demonstrate three novel features of basic FGF. First, they identify a functional effect of the binding of heparin to basic FGF. Second, they establish that the binding of heparin to basic FGF can induce structural changes that alter the substrate specificity of protein kinases. Third, and perhaps most important, the results demonstrate the existence of a novel interaction between basic FGF, fibronectin, and laminin. Although the physiological significance of this phosphorylation is not known, these results clearly suggest that the biological activities of basic FGF are regulated by a complex array of biochemical interactions with the proteins, proteoglycans, and glycosaminoglycans present in the extracellular milieu and the cytoplasm.  相似文献   

10.
Angiotensin II (Ang II) and atrial natriuretic peptide (ANP) may be involved in local regulation of the oviductal contraction during the estrous cycle. Thus, the in vitro effects of Ang II and ANP on the secretion and contraction of bovine oviduct during the follicular, postovulatory, and luteal phases were investigated. An in vitro microdialysis system (MDS) was utilized to determine the intraluminal release of prostaglandins (PGs), Ang II, and endothelin-1 (ET-1) from the bovine oviducts as well as to observe the effect of Ang II and ANP on the local secretion of these substances. The basal release of PGs, ET-1, and Ang II was higher (P < 0.05) during the follicular and postovulatory phases than during the luteal phase. Stimulation by infusion of Ang II (10(-6) M) or ANP (10(-7) M) into the MDS was carried out for 4 h between 4 and 8 h of incubation. In the oviducts from the follicular and postovulatory phases, the infusion of ANP increased the release of Ang II, but not of ET-1. Infusion of Ang II stimulated the release of ET-1. Both Ang II and ANP increased PGE(2) and PGF(2alpha) release. In the contraction study, direct administration of Ang II (10(-7) M) or ANP (10(-8) M) into the medium during the follicular and postovulatory phases increased the amplitude of oviductal contraction. In contrast, these substances did not show any effect in the contraction and secretion of oviducts from cows during the midluteal phase. These results indicate that during the periovulatory period, Ang II and ANP stimulate the contractile amplitude of the oviduct in vitro. In addition to their direct action on oviductal contraction, Ang II may activate oviductal secretion of ET-1 and PGs. Likewise, ANP stimulates oviductal secretion of PGs and Ang II. Hence, the overall results suggest the existence of a functional endothelin-angiotensin-ANP system in the bovine oviduct during the periovulatory period, which may regulate the oviductal contraction to ensure maximum efficiency of gamete/embryo transport through the oviduct.  相似文献   

11.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Reduced Protein Kinase C Activity in Ischemic Spinal Cord   总被引:5,自引:4,他引:1  
Protein phosphorylation was evaluated in a rabbit spinal cord ischemia model under conditions where cyclic AMP-dependent protein kinase (PK-A) and calcium/phospholipid-dependent protein kinase (PK-C) were activated. One hour of ischemia did not affect PK-A activity significantly; however, PK-C activity was reduced by more than 60%. In vitro phosphorylation of endogenous proteins by endogenous PK-C revealed that eight particulate and five cytosolic proteins showed stimulated phosphorylation by PK-C activators in control tissue, although this stimulation was virtually absent in ischemic samples. When control and ischemic particulate fractions were combined, the endogenous protein phosphorylation pattern under PK-C-activating conditions was similar to the ischemic sample, which suggests that inhibitory molecules may be present in the ischemic particulate fraction. In vitro phosphorylation of endogenous proteins under PK-A-activating conditions in ischemic tissue was similar to that in control tissue. The results suggest that the PK-C phosphorylation system is selectively impaired in ischemic spinal cord. In addition to reduced PK-C-dependent phosphorylation, an Mr 64,000 protein was phosphorylated in ischemic cytosolic samples, but not in control samples. The phosphorylation of the Mr 64,000 protein was neither PK-C-dependent nor PK-A-dependent. These altered phosphorylation reactions may play critical roles in neuronal death during the course of ischemia.  相似文献   

13.
Effects of protein kinase inhibitors on pig oocyte maturation in vitro.   总被引:1,自引:0,他引:1  
Normal oocyte maturation depends on signal transmission between granulosa cells and the oocyte. We have analysed the effects of inhibiting (I) cyclic AMP-dependent protein kinase (protein kinase A, PK-A), (II) Ca2+/phospholipid-dependent protein kinase (protein kinase C, PK-C) and (III) calmodulin (CaM) on pig oocyte maturation in vitro, protein synthesis and phosphorylation. The inhibition of PK-A using a specific inhibitor H8, decreased the maturation rate (rate of germinal vesicle breakdown, GVBD) of cumulus-enclosed pig oocytes in a dose-dependent manner by approximately 12%, reaching a plateau at 100 microM. The inhibition of PK-C with H7, an inhibitor with some side-effects on PK-A, decreased the maturation rate of cumulus-enclosed oocytes in a dose-dependent manner to a maximum of 20% at a concentration of 100 microM. The calmodulin antagonist W7 up to a concentration of 200 microM had no effects on maturation of cumulus-enclosed pig oocytes. None of the inhibitors (H7, H8 and W7) altered the patterns of protein synthesis of either pig oocytes and cumulus cells after maturation in vitro. Oocyte phosphoprotein patterns were, however, clearly changed by W7. Cumulus cell protein phosphorylation patterns were changed by all 3 agents. Since inhibition of cyclic AMP and Ca2+ phospholipid pathways by PK-A and PK-C blocking chemicals affected only a limited proportion of oocytes (12 and 20%, respectively) and inhibition of Ca2+ binding to CaM was without effect on oocyte maturation, we conclude that these pathways modulate rather than regulate oocyte maturation in the pig.  相似文献   

14.
The hypothesis that equine embryos initiate oviductal transport in mares was tested by placing day 6 uterine embryos in the oviducts of day 2 (n = 10) or day 5 (n = 10) recipient mares and attempting to collect the embryos from the uterus 48 h later. To determine whether the surgical transfer procedure initiated oviductal transport, medium alone was placed in the oviducts of day 2 (n = 10) inseminated mares (sham transfer), and uterine embryo collections were attempted 48 h later. Embryos were transported through the oviduct of day 2 recipients by day 4 (instead of day 5 to 6) in six of ten mares, which was not significantly less (P greater than 0.1) than in day 5 recipients (9 of 10). Oviductal transport was not primarily initiated by the surgical transfer procedure, since oviductal transport occurred in only one sham transfer. There was no significant difference (P greater than 0.1) in the diameter of embryos placed in the oviducts of day 2 and day 5 recipient mares (180 +/- 13.8 versus 187 +/- 11.3 microns, respectively). However, embryos collected from the uterus were significantly smaller (P less than 0.05) in day 2 than in day 5 recipients (375 +/- 85.4 versus 659 +/- 43.6 microns, respectively). One uterine embryo had shed its zona pellucida before being placed in, and transported through, the oviduct of the recipient mare.  相似文献   

15.
Dispersion of cumulus cells in nonmated mice is completed in the oviduct 15–20 h after ovulation. Oviducts, isolated 1 h after ovulation (13 h post-human chorionic gonaditropin), were cultured in vitro for 40 h. In these oviducts, denuded oocytes were first seen at 30 h of culture, indicating that cumulus dispersion proceeded at a slower rate in vitro. Oocyte denudation was accelerated in a dose-dependent manner by the addition of estiadiol to the culture medium in which oviducts were incubated. The addition of progesterone or cycloheximide to the culture medium strongly inhibited oocyte denudation even in the presence of estradiol. When isolated cumuli were incubated in the absence of oviductal tissue, the rate of cell dispersion was slower than that of cumuli incubated inside the oviduct and the addition of estradiol to the culture failed to accelerate this process. On the basis of these data, we propose that cumulus cell dispersion is accelerated by an estrogen-dependent protein produced by the oviduct and that this effect of estrogen is antagonized by progesterone.  相似文献   

16.
Kato Y  Ozaki N  Yamada T  Miura Y  Oiso Y 《Life sciences》2007,80(5):476-483
Among four kinds of protein kinase A (PKA) inhibitors tested, H-89 exhibited a unique action to remarkably enhance adipocyte differentiation of 3T3-L1 cells, whereas the other three PKA inhibitors, PKA inhibitor Fragment 14-22 (PKI), Rp-cAMP, and KT 5720, did not enhance adipocyte differentiation. H-85, which is an inactive form of H-89, exhibited a similar enhancing effect on adipocyte differentiation. H-89 also potentiated the phosphorylation of Akt and extracellular signal-regulated kinase (ERK) 1/2 in 3T3-L1 cells, which function as downstream signaling of insulin. Phosphoinositide 3-kinase (PI3K) inhibitor wortmannin and mitogen-activated protein kinase kinase (MEK) inhibitor PD 98059 suppressed both the H-89-induced promotion of adipocyte differentiation and the H-89-induced potentiation of phosphorylation of Akt and ERK1/2. Rho kinase inhibitor Y-27632 also promoted the phosphorylation of both Akt and ERK1/2 and enhanced adipocyte differentiation, although its effect was somewhat less than that of H-89. Even when cells were treated with a mixture of Y-27632 and H-89, the additive enhancing effects on both the insulin signaling and adipocyte differentiation were not detected. Therefore, it is suggested that the major possible mechanism whereby H-89 potentiates adipocyte differentiation of 3T3-L1 cells is activation of insulin signaling that is elicited mostly by inhibiting Rho/Rho kinase pathway.  相似文献   

17.
The optimal oviductal environment, including contractile activity for gamete transport, fertilization and early embryonic development, is mediated by physiological and anatomical changes in the oviduct during the estrous cycle. Oviductal epithelial cell culture was utilized to investigate the effect of ovarian steroids (progesterone [P4] and estradiol 17 beta [E2]), oxytocin (OT) and luteinizing hormone (LH) on the local production of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) and endothelin-1 (ET-1) in the cow oviduct. Epithelial cells isolated from oviducts collected during the follicular phase were cultured in M199 under standard culture conditions until monolayer formation. Then the cells were trypsinized and plated at a density of 3 x 10(4)/mL/well and cultured again until subconfluency, at which time the cells were incubated for 4 or 24 h with M199 only (control), high P4 (H-P4; 1 microgram/mL), low P4 (L-P4; 10 ng/mL), E2 (1 ng/mL), LH (10 ng/mL), OT (10(-9) M) ET-1 (10(-9) M), PGE2 (10(-8) M) PGF2 alpha (10(-9) M) or their combination (H-P4 + E2, L-P4 + E2, LH + E2, ET-1 + E2, L-P4 + E2 + LH and H-P4 + E2 + LH). The production of both PG and ET-1 was increased by E2 + low P4 and LH + E2 + low P4 (P < 0.05), while LH + E2 enhanced the production of PGF2 alpha and ET-1 (P < 0.05). Moreover, E2 + ET-1 stimulated PG production (P < 0.05). However, OT had no effect on the production of any of these substances. These results suggest that the preovulatory LH surge, together with locally re-circulated high levels of E2 from the Graafian follicle and basal P4 from regressing corpus luteum (CL), induces the maximum stimulatory effect on oviductal PGE2, PGF2 alpha and ET-1 production during the periovulatory period. Consequently, the elevated local ET-1 concentration during periovulatory period may induce the high contractile activity of the oviduct and, at the same time, the stimulation of PG production. Thus, ET-1 may act as a local amplifier for oviductal PG production stimulated by LH and ovarian steroids.  相似文献   

18.
Recent studies have suggested that the antiproliferative effects of E2 may be mediated through a nongenomic action. Herein, we asked whether nongenomic estrogen action regulates phosphorylation of Raf1 and ERK1/2 mitogen-activated protein (MAP) kinase in lung myofibroblasts. We demonstrated that lung myofibroblasts, incubated in the presence of E2, showed a rapid phosphorylation on serine-259 of Raf1 and tyrosine-204 of ERK1/2 MAP kinase at 15 min, by approximately 3- and 5-fold, respectively. This phosphorylation was followed by dephosphorylation between 30 and 60 min. Western blot analysis showed that E2 regulates tyrosine phosphorylation of four main cytoplasmic proteins in lung myofibroblasts, of 42, 44, 70 and 100 kDa. Furthermore, our results indicated that E2 inhibits cell proliferation (BrdU index) in lung myofibroblasts by approximately 30% (P < 0.01). These data provide evidence that nongenomic action of E2, regulates both serine and tyrosine phosphorylation of cytoplasmic proteins in lung myofibroblasts, including Raf1 and ERK1/2 MAP kinase, which may regulate proliferation in lung myofibroblasts.  相似文献   

19.
The human oviduct derived embryotrophic factor-3 (ETF-3) contains complement protein-3 (C3) and its derivates. Although C3 is not embryotrophic, it is converted into the embryotrophic derivative, iC3b in the presence of embryos and oviductal cells. The regulation of C3 production in the oviduct is not known. The objectives of this study were to investigate the effects of presence of preimplantation embryos and hormones on C3 expression in the oviducts in vitro and in vivo. The expression of C3 in the oviduct of pregnant mice was compared to that of pseudo-pregnant mice. The hormonal action on C3 expression was studied in the ovariectomized mouse oviducts and human oviductal epithelial (OE) cells. The results showed that the level of C3 mRNA in the mouse oviduct was high on Day 1 and Day 2, but decreased to a minimum on Day 4 of pregnancy, whereas that of pseudo-pregnancy remained relatively stable within the same period. The protein levels of C3 and iC3b specific fragments, alpha-115 and alpha-40, respectively in the mouse oviductal luminal fluid were highest on Day 3 of pregnancy, when the embryos were expected to be most sensitive to the embryotrophic activity of ETF-3. Estrogen elevated C3 expression in the ovariectomized mouse oviduct and the OE cells. Progesterone suppressed estrogen-induced C3 expression in the mouse oviduct, but had no effect on OE cells. In conclusion, the presence of embryo and steroid hormones regulate the synthesis and secretion of oviductal C3.  相似文献   

20.
We sampled oviducts and endometria of 27 cynomolgus macaques during the menstrual cycle and measured the concentration of nuclear and cytoplasmic estrogen receptors in these tissues by exchange assay. We assessed the stage of the cycle by correlating serum estradiol (E2) and progesterone (P), as measured by radioimmunoassay, with the morphological condition of the ovaries, oviducts and endometrium of each animal. We have previously identified a series of oviductal stages that reflected the orderly sequence of cytological changes in the oviduct during the cycle, and we normalized receptor measurements to these stages. The amounts of nuclear and cytoplasmic estrogen receptor in both the oviduct and the endometrium were approximately twofold greater in the follicular phase than in the luteal phase. In the follicular phase, elevated receptor levels were associated with oviductal proliferation and differentiation, as well as with endometrial proliferation. During the luteal phase, lowered levels were correlated with atrophy and dedifferentiation in the oviduct, but with hypertrophy and progestational development in the endometrium. When the luteal phase of one cycle ends and the follicular phase of the next begins, it is a decline in serum P, not a rise in serum E2, that precedes the elevation in estrogen receptor level and the onset of proliferation in the oviduct and endometrium. Proliferation of the reproductive tract and elevations in nuclear estrogen receptor levels during the early follicular phase can therefore be viewed as consequences of the release of the system from antagonism by P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号