首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced glycation end products (AGEs) play an important role in the development of angiopathy in diabetes mellitus and atherosclerosis. Here, we show that adducts of N(epsilon)-(carboxymethyl)lysine (CML), a major AGE, and bovine serum albumin (CML-BSA) stimulated gamma-glutamylcysteine synthetase (gamma-GCS), which is a key enzyme of glutathione (GSH) synthesis, in RAW264.7 mouse macrophage-like cells. CML-BSA stimulated the expression of gamma-GCS heavy subunit (h) time- and dose-dependently and concomitantly increased GSH levels. CML-BSA also stimulated DNA-binding activity of activator protein-1 (AP-1) within 3h, but the stimulatory effect decreased in 5h, and nuclear factor-kappaB (NF-kappaB) with a peak activity at 1h and the stimulatory effect diminished in 3h. Studies of luciferase activity of the gamma-GCSh promoter showed that deletion and mutagenesis of the AP-1-site abolished CML-BSA-induced up-regulation, while that of NF-kappaB-site did not affect CML-BSA-induced activity. CML-BSA also stimulated the activity of protein kinase C, Ras/Raf-1, and MEK/ERK1/2. Inhibition of ERK1/2 abolished CML-BSA-stimulated AP-1 DNA-binding activity and gamma-GCSh mRNA expression. Our results suggest that induction of gamma-GCS by CML adducts seems to increase the defense potential of cells against oxidative stress produced during glycation processes.  相似文献   

2.
The present investigation studies the effect of aging, short-term and long-term caloric restriction on four different markers of oxidative, glycoxidative or lipoxidative damage to heart mitochondrial proteins: protein carbonyls (measured by ELISA); N epsilon -(carboxyethyl)lysine (CEL), N epsilon -(carboxymethyl)lysine (CML), and N epsilon -(malondialdehyde)lysine (MDA-lys) measured by gas chromatography/mass spectrometry. Aging increased the steady state level of CML in rat heart mitochondria without changing the levels of the other three markers of protein damage. Short-term caloric restriction (six weeks) did not change any of the parameters measured. However, long-term (one year) caloric restriction decreased CEL and MDA-lys in heart mitochondria and did not change protein carbonyls and CML levels. The decrease in MDA-lys was not due to changes in the sensitivity of mitochondrial lipids to peroxidation since the measurements of the fatty acid composition showed that the total number of fatty acid double bonds was not changed by caloric restriction. The decrease in CEL and MDA-lys in caloric restriction agrees with the previously and consistently described finding that caloric restriction agrees with the previously and consistently described finding that caloric restriction lowers the rate of generation of reactive oxygen species (ROS) in rodent heart mitochondria, although in the case of CEL a caloric restriction-induced lowering of glycaemia can also be involved. The CEL and MDA-lys results support the notion that caloric restriction decreases oxidative stress-derived damage to heart mitochondrial proteins.  相似文献   

3.
4-Oxo-2(E)-nonenal (ONE), a peroxidation product of ω-6 polyunsaturated fatty acids, covalently reacts with lysine residues to generate a 4-ketoamide-type ONE-lysine adduct, N(ε)-(4-oxononanoyl)lysine (ONL). Using an ONL-coupled protein as the immunogen, we raised the monoclonal antibody (mAb) 9K3 directed to the ONL and conclusively demonstrated that the ONL was produced during the oxidative modification of a low density lipoprotein (LDL) in vitro. In addition, we observed that the ONL was present in atherosclerotic lesions, in which an intense immunoreactivity was mainly localized in the vascular endothelial cells and macrophage- and vascular smooth muscle cell-derived foam cells. Using liquid chromatography with on-line electrospray ionization tandem mass spectrometry, we also established a highly sensitive method for quantification of the ONL and confirmed that the ONL was indeed formed during the lipid peroxidation-mediated modification of protein in vitro and in vivo. To evaluate the biological implications for ONL formation, we examined the recognition of ONL by the scavenger receptor lectin-like oxidized LDL receptor-1 (LOX-1). Using CHO cells stably expressing LOX-1, we evaluated the ability of ONL to compete with the acetylated LDL and found that both the ONE-modified and ONL-coupled proteins inhibited the binding and uptake of the modified LDL. In addition, we demonstrated that the ONL-coupled protein was incorporated into differentiated THP-1 cells via LOX-1. Finally, we examined the effect of ONL on the expression of the inflammation-associated gene in THP-1 and observed that the ONL-coupled proteins significantly induced the expression of atherogenesis-related genes, such as the monocyte chemoattractant protein-1 and tumor necrosis factor-α, in a LOX-1-dependent manner. Thus, ONL was identified to be a potential endogenous ligand for LOX-1.  相似文献   

4.
Free radical-catalyzed peroxidation of docosahexaenoic acid (DHA, C22:6/omega-3) generates various lipid peroxidation products that covalently modify biomolecules such as proteins. Under a free radical-generating system, DHA significantly modified lysine residues in bovine serum albumin. Upon incubation of oxidized DHA with an amino-compound pyridoxamine or a lysine-containing peptide, N-propanoyl and N-succinyl adducts were determined to be the major modification products. The hydroperoxide levels in the oxidized DHA closely reflected the formation of the N(epsilon)-(succinyl)lysine (SUL) upon reaction with the peptide, indicating that the hydroperoxides of DHA represent a potential pathway for the formation of SUL. To detect the DHA-derived protein modification in vivo, we developed a monoclonal antibody (mAb2B12) specific to SUL and found that the antibody specifically reacts with the SUL moiety. The formation of SUL was then immunochemically demonstrated in the liver of mice fed with DHA followed by intraperitoneal injection of carbon tetrachloride (CCl(4)), a hepatic lipid peroxidation model. Immunoreactive materials with mAb2B12 were observed in the DHA + CCl(4) group, but were not significant in the control, DHA-alone, and CCl(4)-alone groups. These data suggest that the formation of DHA-derived adducts such as SUL may be implicated in the oxidative damage observed in DHA-enriched tissues.  相似文献   

5.
The objectives of this study were to estimate the structure of the lipid hydroperoxide-modified lysine residue and to prove the presence of the adducts in vivo. The reaction of lipid hydroperoxide toward the lysine moiety was investigated employing N-benzoyl-glycyl-L-lysine (Bz-Gly-Lys) as a model compound of Lys residues in protein and 13-hydroperoxyoctadecadienoic acid (13-HPODE) as a model of the lipid hydroperoxides. One of the products, compound X, was isolated from the reaction mixture of 13-HPODE and Bz-Gly-Lys and was then identified as N-benzoyl-glycyl-Nepsilon-(hexanonyl)lysine. To prove the formation of Nepsilon-(hexanonyl)lysine, named HEL, in protein exposed to the lipid hydroperoxide, the antibody to the synthetic hexanonyl protein was prepared and then characterized in detail. Using the anti-HEL antibody, the presence of HEL in the lipid hydroperoxide-modified proteins and oxidized LDL was confirmed. Furthermore, the positive staining by anti-HEL antibody was observed in human atherosclerotic lesions using an immunohistochemical technique. The amide-type adduct may be a useful marker for the lipid hydroperoxide-derived modification of biomolecules.  相似文献   

6.
We have developed a separation system for N(epsilon)-(carboxyethyl)lysine (CEL) and N(epsilon)-(carboxymethyl)lysine (CML) by HPLC equipped with a styrene-divinylbenzene copolymer resin coupled with sulfonic group cation-exchange column and examined whether CEL is formed from proteins modified by glucose via the Maillard reaction. CEL was generated by incubating bovine serum albumin (BSA) with glucose, a reaction inhibited by aminoguanidine, but enhanced by phosphate. Although several aldehydes were detected during incubation of N(alpha)-acetyllysine with glucose, incubation of BSA with methylglyoxal alone generated CEL. These results indicate that methylglyoxal is responsible for CEL formation on protein in vitro.  相似文献   

7.
Transglutaminases catalyze the formation of Nepsilon-(gamma-glutamyl) isodipeptide crosslinks between proteins. These enzymes are thought to participate in a number of diseases, including neurological disease and cancer. A method associating liquid chromatography and multiple stage mass spectrometry has been developed for the simultaneous quantitation of [Nepsilon-(gamma-glutamyl) lysine] isodipeptide and lysine on an ion trap mass spectrometer. Highly specific detection has been achieved in MS3 mode. The method includes a derivatization step consisting of butylation of carboxylic groups and acetylation of amide groups, a liquid-liquid extraction, and a 19-min separation on a 100x2.1-mm Beta-basic C18 column with an acetonitrile gradient elution. 13C6-(15)N2 isotopes of the isodipeptide and the lysine serve as internal standards. The assay was linear in the range of 50 pmol/ml to 75 nmol/ml for the isodipeptide and the range of 10 nmol/ml to 3.5 micromol/ml for the lysine, with correlation coefficients greater than 0.99 for both ions. Intra- and inter-day coefficients of variation ranged from 3.5 to 15.9%. The method was successfully applied to human biological samples known to be crosslinked by transglutaminase such as cornified envelopes of epidermis, fibrin, and normal and Huntington disease brain.  相似文献   

8.
Acrolein, a representative carcinogenic aldehyde, that could be ubiquitously generated in biological systems under oxidative stress shows facile reactivity with a nucleophile such as a protein. In this study, to gain a better understanding of the molecular basis of acrolein modification of protein, we characterized the acrolein modification of a model peptide (the oxidized B chain of insulin) by electrospray ionization-liquid chromatography/mass spectrometry method and established a novel acrolein-lysine condensation reaction. In addition, we found that this condensation adduct represented the major antigenic adduct generated in acrolein-modified protein. To identify the modification site and structures of adducts generated in the acrolein-modified insulin B chain, both the acrolein-pretreated and untreated peptides were digested with V8 protease and the resulting peptides were subjected to electrospray ionization-liquid chromatography/mass spectrometry. This technique identified nine peptides, which contained the acrolein adducts at Lys-29 and the N terminus, and revealed that the reaction of the insulin B chain with acrolein gave multiple adducts, including an unknown adduct containing two molecules of acrolein per lysine. To identify this adduct, we incubated N(alpha)-acetyllysine with acrolein and isolated a product having the same molecular mass as the unknown acrolein-lysine adduct. On the basis of the chemical and spectroscopic evidence, the adduct was determined to be a novel pyridinium-type lysine adduct, N(epsilon)-(3-methylpyridinium)lysine (MP-lysine). The formation of MP-lysine was confirmed by amino acid analysis of proteins treated with acrolein. More notably, this condensation adduct appeared to be an intrinsic epitope of a monoclonal antibody 5F6 that had been raised against acrolein-modified protein.  相似文献   

9.
Formalin‐fixed paraffin‐embedded (FFPE) tissue is considered as an appropriate alternative to frozen/fresh tissue for proteomic analysis. Here we study formalin‐induced alternations on a proteome‐wide level. We compared LC‐MS/MS data of FFPE and frozen human kidney tissues by two methods. First, clustering analysis revealed that the biological variation is higher than the variation introduced by the two sample processing techniques and clusters formed in accordance with the biological tissue origin and not with the sample preservation method. Second, we combined open modification search and spectral counting to find modifications that are more abundant in FFPE samples compared to frozen samples. This analysis revealed lysine methylation (+14 Da) as the most frequent modification induced by FFPE preservation. We also detected a slight increase in methylene (+12 Da) and methylol (+30 Da) adducts as well as a putative modification of +58 Da, but they contribute less to the overall modification count. Subsequent SEQUEST analysis and X!Tandem searches of different datasets confirmed these trends. However, the modifications due to FFPE sample processing are a minor disturbance affecting 2–6% of all peptide‐spectrum matches and the peptides lists identified in FFPE and frozen tissues are still highly similar.  相似文献   

10.
Advanced glycation end products (AGEs) are known to be associated with a number of pathological conditions, such as diabetes mellitus, Alzheimer's disease, uremia, as well as with normal aging. This study was undertaken to investigate whether Nepsilon-(carboxymethyl)lysine (CML), a major structure among numerous AGEs, engenders hepatic AGE clearance. For this purpose uptake of BSA substituted with heterogeneous AGEs or with CML only was monitored in vivo and in cultured hepatic scavenger cells. Here, we show that following intravenous administration of 125I-AGE-BSA and 125I-CML-BSA, blood radioactivity was reduced by 50% after 50s and >100 min, respectively. Recoveries from the circulation at 6 min after injection were: 5% for AGE-BSA, 95% for CML-BSA. More than 80% of the injected AGE-BSA was recovered from the liver. AGE-BSA, but not CML-BSA, was avidly endocytosed by cultured liver scavenger cells. Our results suggest that CML does not engender AGE-BSA clearance. Macromolecules substituted with CML only may escape elimination and cause pathological effects.  相似文献   

11.
The present investigation studies the effect of aging, short-term and long-term caloric restriction on four different markers of oxidative, glycoxidative or lipoxidative damage to heart mitochondrial proteins: protein carbonyls (measured by ELISA); N epsilon -(carboxyethyl)lysine (CEL), N epsilon -(carboxymethyl)lysine (CML), and N epsilon -(malondialdehyde)lysine (MDA-lys) measured by gas chromatography/mass spectrometry. Aging increased the steady state level of CML in rat heart mitochondria without changing the levels of the other three markers of protein damage. Short-term caloric restriction (six weeks) did not change any of the parameters measured. However, long-term (one year) caloric restriction decreased CEL and MDA-lys in heart mitochondria and did not change protein carbonyls and CML levels. The decrease in MDA-lys was not due to changes in the sensitivity of mitochondrial lipids to peroxidation since the measurements of the fatty acid composition showed that the total number of fatty acid double bonds was not changed by caloric restriction. The decrease in CEL and MDA-lys in caloric restriction agrees with the previously and consistently described finding that caloric restriction agrees with the previously and consistently described finding that caloric restriction lowers the rate of generation of reactive oxygen species (ROS) in rodent heart mitochondria, although in the case of CEL a caloric restriction-induced lowering of glycaemia can also be involved. The CEL and MDA-lys results support the notion that caloric restriction decreases oxidative stress-derived damage to heart mitochondrial proteins.  相似文献   

12.
Nepsilon-(hexanoyl)lysine (HEL) is a potentially useful marker of oxidative stress in animals. We investigated whether HEL might be useful as a marker in rice seeds damaged by oxidative stress during storage, as well as in animals. The germination ability of rice decreased with lipid peroxidation during storage at 40 degrees C for three months. Moreover, we observed accumulation of HEL in the damaged rice. In addition, the activities of antioxidative enzymes, catalase and superoxide dismutase, significantly decreased in the rice seeds during storage at 40 degrees C. These results suggest that HEL might be a useful marker of oxidative stress in rice.  相似文献   

13.
Modification of the lysine residues in the lactose repressor protein has been carried out with trinitrobenzenesulfonate. Reaction of lysine residues at positions 33, 37, 108, 290, and 327 was observed. Inducer binding was increased by modification with this reagent, while both nonspecific DNA binding and operator DNA binding were diminished, although to differing degrees. The loss in operator DNA binding capacity was complete with modification of approximately 2 equiv of lysine per monomer. The extent of reaction was affected by the presence of both sugar and DNA ligands; binding activities of the modified protein and reaction pattern of the lysines were perturbed by these ligands. The presence of operator or nonspecific DNA during the reaction protected against specific and nonspecific DNA binding activity loss. This protection presumably occurs by steric restriction of reagent access to lysine residues which are essential for both nonspecific and operator binding interactions. Lysines-33 and -108 were protected from modification in the presence of DNA. These experiments suggest that the charge on the lysine residues is important for protein interaction with DNA and that steric constraints for operator DNA interaction with the protein are more restrictive than for nonspecific DNA binding. In contrast, inducer (isopropyl beta-D-thiogalactoside) presence partially protected lysine-290 from modification while significantly enhancing reaction at lysine-327. Conformational alterations consequent to inducer binding are apparently reflected in these altered lysine reactivities.  相似文献   

14.
The world's major crops are deficient in lysine and several other amino acids essential for human and animal nutrition. Increasing the content of these amino acids in cereals, our major source of dietary energy, can help feed a global population whose reliance upon dietary protein is growing faster than crop yields. Here we document the heritable expression in rice, the world's major cereal crop, of tRNA(lys) species that introduce lysine at alternative codons during protein synthesis, resulting in a significant enrichment of the lysine content of proteins in rice seeds without changing the types or quantities of the seed storage proteins.  相似文献   

15.
Heart failure is a condition closely linked to diabetes. Hyperglycaemia amplifies the generation of a major advanced glycation end product Nepsilon-(carboxymethyl)lysine (CML), which has been associated with the development of vascular and inflammatory complications. An increased accumulation of CML in hearts of diabetic patients may be one of the mechanisms related to the high risk of heart failure. Therefore, we investigated the localization of CML in diabetic hearts. To investigate the presence and accumulation of CML in tissues, a monoclonal anti-CML antibody was generated and characterised. With this novel monoclonal antibody against CML, the localization of CML was investigated by immunohistochemistry, in heart tissue of controls (n = 9) and heart tissue of diabetic patients (n = 8) without signs of inflammation or infarction. In addition, in the same subjects we studied the presence of CML in renal and lung tissues. CML staining was approximately sixfold higher in hearts from diabetic patients as compared to control hearts (2.0 +/- 0.3 and 0.3 +/- 0.2 A.U., respectively, P < 0.01). CML deposition was localized in the small intramyocardial arteries in endothelial cells and smooth muscle cells, but not in cardiomyocytes. These arteries did not show morphological abnormalities. The intensity of staining between arteries at the epicardial, midcardial and endocardial side did not vary significantly within patients. In renal tissues, CML staining was most prominent in tubules and in atherosclerotic vessels, without differences in intensity between controls and diabetic patients. In non-infected lungs, no CML was detected. In conclusion, CML adducts are abundantly present in small intramyocardial arteries in the heart tissue of diabetic patients. The accumulation of CML in diabetic hearts may contribute to the increased risk of heart failure in hyperglycaemia.  相似文献   

16.
Deubiquitinating enzymes (DUbs) play important roles in many ubiquitin-dependent pathways, yet how DUbs themselves are regulated is not well understood. Here, we provide insight into the mechanism by which ubiquitination directly enhances the activity of ataxin-3, a DUb implicated in protein quality control and the disease protein in the polyglutamine neurodegenerative disorder, Spinocerebellar Ataxia Type 3. We identify Lys-117, which resides near the catalytic triad, as the primary site of ubiquitination in wild type and pathogenic ataxin-3. Further studies indicate that ubiquitin-dependent activation of ataxin-3 at Lys-117 is important for its ability to reduce high molecular weight ubiquitinated species in cells. Ubiquitination at Lys-117 also facilitates the ability of ataxin-3 to induce aggresome formation in cells. Finally, structure-function studies support a model of activation whereby ubiquitination at Lys-117 enhances ataxin-3 activity independent of the known ubiquitin-binding sites in ataxin-3, most likely through a direct conformational change in or near the catalytic domain.  相似文献   

17.
Modification by phenylisothiocyanate inhibits the phosphatidylcholine-transfer protein from bovine liver. Inhibition by this apolar reagent was greatly enhanced in the presence of vesicles, indicating that an effective modification of an essential lysine residue(s) from the interface may occur. Labeling with [14C]phenylisothiocyanate demonstrated that Lys55 was the major site of modification. We propose that Lys55 is part of the peptide segment that interacts with the membrane.  相似文献   

18.
19.
To map the accessible surface of filamentous bacteriophage fd particles, the epitope structures of polyclonal rabbit serum and three mouse monoclonal antibodies raised against complete phage were analysed. Western blot analysis confirmed the major coat protein, gene VIII product (g8p or pVIII), to be the antigen. Overlapping peptides were synthesised by spot synthesis on cellulose membranes, covering the whole sequence of g8p. Each of the three tested monoclonal antibodies, B62-FE2, B62-GF3/G12 and B62-EA11, reacted with a core epitope covering ten amino acid residues at or near the amino terminus of g8p. The epitope recognised by B62-FE2 consists of the ten N-terminal amino acid residues of g8p. Extension of the amino terminus by various sequences did not inhibit binding, indicating that a terminal amino group is not essential for the interaction. Both B62-GF3/G12 and B62-EA11 recognise internal epitopes covering amino acid residues 3 to 12 of g8p. The epitopes of the polyclonal rabbit serum were also confined to the 12 N-terminal amino acid residues. The contribution of individual amino acid residues to the binding was analysed by a set of peptides containing individual amino acids exchanged by glycine. Accessible residues were Glu2, Asp4, Asp5, Pro6, Lys8, Phe11 and Asp12. The positions of the essential amino acid residues within the epitope are in accordance with a helical conformation of the amino-terminal region of g8p. Further, the results suggest new designs of phage display screening vectors to improve their performance in analysing non-linear epitopes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号