首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose expression causes deregulated growth in NIH 3T3 mouse fibroblasts. Although Rac1 has not been shown to be a substrate for Dbs in either in vitro or in vivo assays, the Rat ortholog of Dbs (Ost) has been shown to bind specifically to GTP.Rac1 in vitro. The dependence of the Rac1/Dbs interaction on GTP suggests that Dbs may in fact be an effector for Rac1. Here we show that the interaction between activated Rac1 and Dbs can be recapitulated in mammalian cells and that the Rac1 docking site resides within the pleckstrin homology domain of Dbs. This interaction is specific for Rac1 and is not observed between Rac1 and several other members of the Rho-specific guanine nucleotide exchange factor family. Co-expression of Dbs with activated Rac1 causes enhanced focus forming activity and elevated levels of GTP.RhoA in NIH 3T3 cells, indicating that Dbs is activated by the interaction. Consistent with this, activated Rac1 co-localizes with Dbs in NIH 3T3 cells, and natively expressed Rac1 relocalizes in response to Dbs expression. To summarize, we have characterized a surprisingly direct pleckstrin homology domain-mediated mechanism through which Rho GTPases can become functionally linked.  相似文献   

2.
Accumulating evidence suggests that Rho family GTPases play critical roles in the organization of the nervous system. We previously identified a guanine nucleotide exchange factor of Rac1, STEF (SIF and Tiam 1-like exchange factor), which can induce ruffling membrane in KB cells and is predominantly expressed in the brain during development. Here, we characterize the molecular nature of STEF and its involvement in neurite growth. Deletion analyses revealed distinct roles for individual domains: PHnTSS for membrane association, DH for enzymatic activity, and PHc for promoting catalytic activity. Ectopic expression of STEF in N1E-115 neuroblastoma cells induced neurite-like processes containing F-actin, betaIII tubulin, MAP2, and GAP43 in a Rac1-dependent manner even under the serum-containing neurite-inhibiting conditions. We further found that a PHnTSS STEF fragment specifically inhibited the function of both STEF and Tiam1, a closely related Rac1 guanine nucleotide exchange factor. Suppression of endogenous STEF and Tiam1 activities in N1E-115 cells by ectopically expressed PHnTSS STEF resulted in inhibition of neurite outgrowth in serum-starved conditions, which usually induce neurite formation. Furthermore, these inhibitory effects were rescued by exogenously expressed STEF or Tiam1, suggesting that STEF and Tiam1 are involved in neurite formation through the activation of Rac1 and successive cytoskeletal reorganization of neuronal cells during development.  相似文献   

3.
4.
To identify neuron-specific genes, we performed gene expression profiling, cDNA microarray and in silico ESTs (expressed sequence tags) analyses. We identified a human neuron-specific gene, KIAA1110 (homologue of rat synArfGEF (Po)), that is a member of the guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF). RT-PCR analysis showed that the KIAA1110 gene was expressed specifically in the brain among adult human tissues, whereas no apparent expression was observed in immature neural tissues/cells, such as fetal brain, glioma tissues/cells, and neural stem/precursor cells (NSPCs). The KIAA1110 protein was shown to be expressed in mature neurons but not in undifferentiated NSPCs. Immunohistochemical analysis also showed that KIAA1110 was expressed in neurons of the human adult cerebral cortex. Furthermore, the pull-down assay revealed that KIAA1110 has a GEF activity toward ARF1 that regulates transport along the secretion pathway. These results suggest that KIAA1110 is expressed specifically in mature neurons and may play an important role in the secretion pathway as a GEF for ARF1.  相似文献   

5.
6.
We investigated how the type III secretion system WxxxE effectors EspM2 of enterohaemorrhagic Escherichia coli, which triggers stress fibre formation, and SifA of Salmonella enterica serovar Typhimurium, which is involved in intracellular survival, modulate Rho GTPases. We identified a direct interaction between EspM2 or SifA and nucleotide‐free RhoA. Nuclear Magnetic Resonance Spectroscopy revealed that EspM2 has a similar fold to SifA and the guanine nucleotide exchange factor (GEF) effector SopE. EspM2 induced nucleotide exchange in RhoA but not in Rac1 or H‐Ras, while SifA induced nucleotide exchange in none of them. Mutating W70 of the WxxxE motif or L118 and I127 residues, which surround the catalytic loop, affected the stability of EspM2. Substitution of Q124, located within the catalytic loop of EspM2, with alanine, greatly attenuated the RhoA GEF activity in vitro and the ability of EspM2 to induce stress fibres upon ectopic expression. These results suggest that binding of SifA to RhoA does not trigger nucleotide exchange while EspM2 is a unique Rho GTPase GEF.  相似文献   

7.
Neuritogenesis requires active actin cytoskeleton rearrangement in which Rho GTPases play a pivotal role. In a previous study (Shin, E. Y., Woo, K. N., Lee, C. S., Koo, S. H., Kim, Y. G., Kim, W. J., Bae, C. D., Chang, S. I., and Kim, E. G. (2004) J. Biol. Chem. 279, 1994-2004), we demonstrated that betaPak-interacting exchange factor (betaPIX) guanine nucleotide exchange factor (GEF) mediates basic fibroblast growth factor (bFGF)-stimulated Rac1 activation through phosphorylation of Ser-525 and Thr-526 at the GIT-binding domain (GBD). However, the mechanism by which this phosphorylation event regulates the Rac1-GEF activity remained elusive. We show here that betaPIX binds to Rac1 via the GBD and also activates the GTPase via an associated GEF, smgGDS, in a phosphorylation-dependent manner. Notably, the Rac1-GEF activity of betaPIX persisted for an extended period of time following bFGF stimulation, unlike other Rho GEFs containing the Dbl homology domain. We demonstrate that C-PIX, containing proline-rich, GBD, and leucine zipper domains can interact with Rac1 via the GBD in vitro and in vivo and also mediated bFGF-stimulated Rac1 activation, as determined by a modified GEF assay and fluorescence resonance energy transfer analysis. However, nonphosphorylatable C-PIX (S525A/T526A) failed to generate Rac1-GTP. Finally, betaPIX is shown to form a trimeric complex with smgGDS and Rac1; down-regulation of smgGDS expression by short interfering RNA causing significant inhibition of betaPIX-mediated Rac1 activation and neurite outgrowth. These results provide evidence for a new and unexpected mechanism whereby betaPIX can regulate Rac1 activity.  相似文献   

8.
Mutations in dpix were recovered from a large-scale screen in Drosophila for genes that control synaptic structure. dpix encodes dPix, a Rho-type guanine nucleotide exchange factor (RtGEF) homologous to mammalian Pix. Here we show that dPix plays a major role in regulating postsynaptic structure and protein localization at the Drosophila glutamatergic neuromuscular junction. dpix mutations lead to decreased synaptic levels of the PDZ protein Dlg, the cell adhesion molecule Fas II, and the glutamate receptor subunit GluRIIA, and to a complete reduction of the serine/threonine kinase Pak and the subsynaptic reticulum. The electrophysiology of these mutant synapses is nearly normal. Many, but not all, dpix defects are mediated through dPak, a member of the family of Cdc42/Rac1-activated kinases. Thus, a Rho-type GEF and Rho-type effector kinase regulate postsynaptic structure.  相似文献   

9.
The GRP1 protein contains a Sec7 homology domain that catalyzes guanine nucleotide exchange on ADP-ribosylation factors (ARF) 1 and 5 as well as a pleckstrin homology domain that binds phosphatidylinositol(3,4,5)P(3), an intermediate in cell signaling by insulin and other extracellular stimuli (Klarlund, J. K., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that both endogenous GRP1 and ARF6 rapidly co-localize in plasma membrane ruffles in Chinese hamster ovary (CHO-T) cells expressing human insulin receptors and COS-1 cells in response to insulin and epidermal growth factor, respectively. The pleckstrin homology domain of GRP1 appears to be sufficient for regulated membrane localization. Using a novel method to estimate GTP loading of expressed HA epitope-tagged ARF proteins in intact cells, levels of biologically active, GTP-bound ARF6 as well as GTP-bound ARF1 were elevated when these ARF proteins were co-expressed with GRP1 or the related protein cytohesin-1. GTP loading of ARF6 in both control cells and in response to GRP1 or cytohesin-1 was insensitive to brefeldin A, consistent with previous data on endogenous ARF6 exchange activity. The ability of GRP1 to catalyze GTP/GDP exchange on ARF6 was confirmed using recombinant proteins in a cell-free system. Taken together, these results suggest that phosphatidylinositol(3,4,5)P(3) may be generated in cell membrane ruffles where receptor tyrosine kinases are concentrated in response to growth factors, causing recruitment of endogenous GRP1. Further, co-localization of GRP1 with ARF6, combined with its demonstrated ability to activate ARF6, suggests a physiological role for GRP1 in regulating ARF6 functions.  相似文献   

10.
Asef is a member of the Dbl-family of guanine nucleotide exchange factors (GEFs) with a proposed specificity for the small GTPase Rac1. Here we investigated the specificity and regulation of Asef by measuring its GEF activity in vitro and observed hardly any activity towards Rac1, Rac2 and Rac3, or RhoA and TC10. In contrast, various purified Asef protein fragments catalyzed the nucleotide exchange reaction of Cdc42. The Cdc42GEF activity of the Dbl homology (DH) domain of Asef was significantly higher in the presence of the pleckstrin homology (PH) domain. Our data strongly suggest that Asef is a canonical Cdc42GEF, which employs its PH domain to efficiently stabilize its autoinhibited state, but also to facilitate nucleotide exchange activity of the DH domain after its activation by upstream signals.  相似文献   

11.
Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.  相似文献   

12.
Although phospholipase C-gamma (PLC-gamma) participates in cellular mitogenesis, evidence indicates that the catalytic activity of PLC-gamma (to hydrolyze certain phosphoinositides) is nonessential to the process. So how is it that PLC-gamma is necessary but its lipase activity is not? Recently published results from Snyder and colleagues describe the ability of PLC-gamma to facilitate guanine nucleotide exchange for the recently identified nucleus-localized GTPase PIKE, which acts to enhance the enzymatic activity of phosphatidylinositol 3'-kinase (PI3K). The authors contend that the SH3 domain, rather than the catalytic domain, of PLC-gamma is required for aiding PIKE, and furthermore, that the mitogenic activity of PLC-gamma depends not on its phospholipase activity, but rather on its interaction with PIKE. Wang and Moran examine the results and piece together a picture of how PLC-gamma cooperates with PIKE.  相似文献   

13.
SGEF (SH3-containing Guanine Nucleotide Exchange Factor) is a RhoGEF of unknown function. We found the SGEF protein to be expressed in many established cell lines and highly expressed in human liver tissue. SGEF stimulated the formation of large interconnected membrane ruffles across dorsal surfaces when expressed in fibroblasts. SGEF required its proline-rich amino-terminus to generate dorsal, but not lateral, membrane ruffles and a functional SH3 domain to colocalize with filamentous actin at sites of membrane protrusion. Full-length SGEF activated RhoG, but not Rac, when expressed in fibroblasts. Further, recombinant SGEF DH/PH protein exchanged nucleotide on RhoG, but not on Rac1 or Rac3, in vitro. Scanning electron microscopy of fibroblasts demonstrated that SGEF induced dorsal ruffles that were morphologically similar to those generated by constitutively active RhoG, but not constitutively active Rac1. Transient expression of SGEF stimulated fibroblast uptake of 10-kDa dextran, a marker of macropinocytosis. This required the full-length protein and a catalytically active DH domain. Finally, activated RhoG was found to be more effective than activated Rac, and comparable to SGEF, in its ability to trigger dextran uptake. Together, this work establishes SGEF as a RhoG exchange factor and provides evidence that both SGEF and RhoG regulate membrane dynamics in promotion of macropinocytosis.  相似文献   

14.
The cortical recruitment and accumulation of the small GTPase Cdc42 are crucial steps in the establishment of polarity, but this process remains obscure. Cdc24 is an upstream regulator of budding yeast Cdc42 that accelerates the exchange of GDP for GTP in Cdc42 via its Dbl homology (DH) domain. Here, we isolated five novel temperature-sensitive (ts) cdc24 mutants, the green fluorescent protein (GFP)-fused proteins of which lose their polarized localization at the nonpermissive temperature. All amino acid substitutions in the mutants were mapped to the NH2-terminal region of Cdc24, including the calponin homology (CH) domain. These Cdc24-ts mutant proteins did not interact with Bem1 at the COOH-terminal PB1 domain, suggesting a lack of exposure of the PB1 domain in the mutant proteins. The cdc24-ts mutants were also defective in polarization in the absence of Bem1. It was previously reported that a fusion protein containing Cdc24 and the p21-activated kinase (PAK)-like kinase Cla4 could bypass the requirement for Bem1 in polarity cue-independent budding (i.e., symmetry breaking). Cdc24-ts-Cla4 fusion proteins also showed ts localization at the polarity site. We propose that the NH2-terminal region unmasks the DH and PB1 domains, leading to the activation of Cdc42 and interaction with Bem1, respectively, to initiate cell polarization.  相似文献   

15.
Epac is a cAMP-dependent exchange factor for the small GTP-binding protein Rap. The activity of Epac is inhibited by a direct interaction between the C-terminal helical part of the cAMP-binding domain, called the lid, and the catalytic region, which is released after binding of cAMP. Herein, we show that the activation properties are very sensitive to modifications of the cyclic nucleotide. Some analogues are inhibitory and others are stimulatory; some are characterized by a much higher activation potential than normal cAMP. Mutational analysis of Epac allows insights into a network of interactions between the cyclic nucleotides and Epac. Mutations in the lid region are able to amplify or to attenuate selectively the activation potency of cAMP analogues. The properties of cAMP analogues previously used for the activation of the cAMP responsive protein kinase A and of 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclicmonophosphate, an analogue highly selective for activation of Epac were investigated in detail.  相似文献   

16.
Human ARHGEF11, a PDZ-domain-containing Rho guanine nucleotide exchange factor (RhoGEF), has been studied primarily in tissue culture, where it exhibits transforming ability, associates with and modulates the actin cytoskeleton, regulates neurite outgrowth, and mediates activation of Rho in response to stimulation by activated Galpha12/13 or Plexin B1. The fruit fly homolog, RhoGEF2, interacts with heterotrimeric G protein subunits to activate Rho, associates with microtubules, and is required during gastrulation for cell shape changes that mediate epithelial folding. Here, we report functional characterization of a zebrafish homolog of ARHGEF11 that is expressed ubiquitously at blastula and gastrula stages and is enriched in neural tissues and the pronephros during later embryogenesis. Similar to its human homolog, zebrafish Arhgef11 stimulated actin stress fiber formation in cultured cells, whereas overexpression in the embryo of either the zebrafish or human protein impaired gastrulation movements. Loss-of-function experiments utilizing a chromosomal deletion that encompasses the arhgef11 locus, and antisense morpholino oligonucleotides designed to block either translation or splicing, produced embryos with ventrally-curved axes and a number of other phenotypes associated with ciliated epithelia. Arhgef11-deficient embryos often exhibited altered expression of laterality markers, enlarged brain ventricles, kidney cysts, and an excess number of otoliths in the otic vesicles. Although cilia formed and were motile in these embryos, polarized distribution of F-actin and Na(+)/K(+)-ATPase in the pronephric ducts was disturbed. Our studies in zebrafish embryos have identified new, essential roles for this RhoGEF in ciliated epithelia during vertebrate development.  相似文献   

17.
Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor   总被引:3,自引:0,他引:3  
ALS2 is the gene mutated in a recessive juvenile form of amyotrophic lateral sclerosis (ALS2). ALS2 encodes a large protein termed alsin, which contains a number of predicted cell signaling and protein trafficking sequence motifs. To gain insight into the overall function of alsin and to begin to evaluate its role in motor neuron maintenance, we examined the subcellular localization of alsin and the biochemical activities associated with its individual subdomains. We found that the Vps9p domain of alsin has Rab5 guanine nucleotide exchange activity. In addition, alsin interacted specifically with and acted as a guanine nucleotide exchange factor for Rac1. Immunofluorescence and fractionation experiments in both fibroblasts and neurons revealed that alsin is a cytosolic protein, with a significant portion associated with small, punctate membrane structures. Many of these membrane structures also contained Rab5 or Rac1. Upon overexpression of full-length alsin, the overexpressed material was largely cytosolic, indicating that the association with membrane structures could be saturated. We also found that alsin was present in membrane ruffles and lamellipodia. These data suggest that alsin is involved in membrane transport events, potentially linking endocytic processes and actin cytoskeleton remodeling.  相似文献   

18.
Polypeptide chain initiation in mammalian systems is regulated at the level of the guanine nucleotide exchange factor (GEF). This multisubunit protein catalyzes the exchange of GDP bound to eukaryotic initiation factor 2 (eIF-2) for GTP. Although various models have been proposed for its mode of action, the exact sequence of events involved in nucleotide exchange is still uncertain. We have studied this reaction by three different experimental techniques: (a) membrane filtration assays to measure the release of [3H]GDP from the eIF-2.[3H]GDP binary complex, (b) changes in the steady-state polarization of fluorescamine-GDP during the nucleotide exchange reaction, and (c) sucrose gradient analysis of the total reaction. The results obtained do not support the reaction as written: eIF-2.GDP + GEF in equilibrium eIF-2.GEF + GDP. The addition of GEF alone does not result in the displacement of eIF-2-bound GDP. The release of bound GDP is dependent on the presence of both GTP and GEF, and this argues against the possibility of a substituted enzyme (ping-pong) mechanism for the guanine nucleotide exchange reaction. An important finding of the present study is the observation that GTP binds to GEF. The Kd value of 4 microM for GTP was estimated (a) by the extent of quenching of tryptophan fluorescence of GEF in the presence of GTP and (b) by the binding of [3H]GTP to GEF as measured on nitrocellulose membranes. The GEF-dependent release of eIF-2-bound GDP was studied at several constant concentrations of one substrate (GTP or eIF-2.GDP) while varying the second substrate concentration, and the results were then plotted according to the Lineweaver-Burk method. Taken together, the results of GTP and eIF-2.GDP binding to GEF and the pattern of the double-reciprocal plots strongly suggest that the guanine nucleotide exchange reaction follows a sequential mechanism.  相似文献   

19.
Vertebrate-striated muscle is assumed to owe its remarkable order to the molecular ruler functions of the giant modular signaling proteins, titin and nebulin. It was believed that these two proteins represented unique results of protein evolution in vertebrate muscle. In this paper we report the identification of a third giant protein from vertebrate muscle, obscurin, encoded on chromosome 1q42. Obscurin is approximately 800 kD and is expressed specifically in skeletal and cardiac muscle. The complete cDNA sequence of obscurin reveals a modular architecture, consisting of >67 intracellular immunoglobulin (Ig)- or fibronectin-3-like domains with multiple splice variants. A large region of obscurin shows a modular architecture of tandem Ig domains reminiscent of the elastic region of titin. The COOH-terminal region of obscurin interacts via two specific Ig-like domains with the NH(2)-terminal Z-disk region of titin. Both proteins coassemble during myofibrillogenesis. During the progression of myofibrillogenesis, all obscurin epitopes become detectable at the M band. The presence of a calmodulin-binding IQ motif, and a Rho guanine nucleotide exchange factor domain in the COOH-terminal region suggest that obscurin is involved in Ca(2+)/calmodulin, as well as G protein-coupled signal transduction in the sarcomere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号