首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Full-length copies of cDNAs of the rpc19+ and rpc40+ genes encoding the common subunits of nuclear RNA polymerases I and III and the corresponding fragments of chromosomes were isolated from genomic and cDNA libraries of Schizosaccharomyces pombe and characterized. It was established that the cloned genes are located on chromosomes III and II of the fission yeast, respectively. The rpc40+ gene lacks introns, and the rpc19+ gene contains two intervening sequences. The comparison of subunits Rpc19 (125 aa; M 13 722 Da; pI 4.51) and Rpc40 (348 aa; M 39 141 Da; pI 5.40) of Sz. pombe, whose characteristics were deduced from the sequences of their cDNAs, with the orthologous components of other eukaryotes allowed the most conserved structure-functional domains of these proteins to be identified.  相似文献   

3.
Rpb8p, a subunit common to the three yeast RNA polymerases, is conserved among eukaryotes and absent from noneukaryotes. Defective mutants were found at an invariant GGLLM motif and at two other highly conserved amino acids. With one exception, they are clustered on the Rpb8p structure. They all impair a two-hybrid interaction with a fragment conserved in the largest subunits of RNA polymerases I (Rpa190p), II (Rpb1p), and III (Rpc160p). This fragment corresponds to the pore 1 module of the RNA polymerase II crystal structure and bears a highly conserved motif (P.I.KP.LW.GKQ) facing the GGLLM motif of Rpb8p. An RNA polymerase I mutant (rpa190-G728D) at the invariant glycyl of P.I.KP.LW.GKQ provokes a temperature-sensitive defect. Increasing the gene dosage of another common subunit, Rpb6p, suppresses this phenotype. It also suppresses a conditional growth defect observed when replacing Rpb8p by its human counterpart. Hence, Rpb6p and Rpb8p functionally interact in vivo. These two subunits are spatially separated by the pore 1 module and may also be possibly connected by the disorganized N half of Rpb6p, not included in the present structure data. Human Rpb6p is phosphorylated at its N-terminal Ser2, but an alanyl replacement at this position still complements an rpb6-Delta null allele. A two-hybrid interaction also occurs between Rpb8p and the product of orphan gene YGR089w. A ygr089-Delta null mutant has no detectable growth defect but aggravates the conditional growth defect of rpb8 mutants, suggesting that the interaction with Rpb8p may be physiologically relevant.  相似文献   

4.
5.
[Rpb1 and Rpb2] Mapping of the contact sites␣on two large subunits of the fission yeast Schizosaccharomyces pombe RNA polymerase II with two small subunits, Rpb3 and Rpb5, was carried out using the two-hybrid screening system in the budding yeast Saccharomyces cerevisiae. Rpb5 was found to interact with any fragment of Rpb1 that contained the region H, which is conserved among the subunit 1 homologues of all RNA polymerases, including the β' subunit of prokaryotic RNA polymerases. In agreement with the fact that Rpb5 is shared among all three forms of eukaryotic RNA polymerases, the region H of RNA polymerase I subunit 1 (Rpa190) was also found to interact with Rpb5. On the other hand, two-hybrid screening of Rpb2 fragments from RNA polymerase II indicated the presence of an Rpb3 contact site in the region H which is conserved among the subunit 2 homologues of all RNA polymerases, including the β subunit of prokaryotic RNA polymerases. Possible functions of the regions H in the subunits 1 and 2 are discussed. Received: 10 December 1997 / Accepted: 14 April 1998  相似文献   

6.
A full-length cDNA of the rpb8+ gene encoding a common subunit Rpb8 of nuclear RNA polymerases I-III only specific for Eucarya was isolated from an expression library of the fission yeast Schizosaccharomyces pombe. The primary structure of the corresponding fragment of the Sz. pombe genome was also established. The rpb8+ gene contains two short introns, 59 and 48 bp long. Only short segments of homology were found upon comparing the Rpb8 subunit homologs from various eukaryotic species, and substantial differences exist between the corresponding proteins of unicellular and multicellular organisms. Subunit Rpb8 of Sz. pombe proved to be the smallest one among the known related proteins: it lacks the 21-aa fragment corresponding to amino acids residues 68-88 of the central part of the homologous subunit ABC14.5 of Saccharomyces cerevisiae. Accordingly, subunit Rpb8 of the fission yeast was not capable of substituting in vivo subunit ABC14.5 in nuclear RNA polymerases of the baker's yeast.  相似文献   

7.
ABC14.5 (Rpb8) is a eukaryotic subunit common to all three nuclear RNA polymerases. In Saccharomyces cerevisiae, ABC14.5 (Rpb8) is essential for cell viability, however its function remains unknown. We have cloned and characterised the Schizosaccharomyces pombe rpb8(+) cDNA. We found that S.pombe rpb8, unlike the similarly diverged human orthologue, cannot substitute for S.cerevisiae ABC14. 5 in vivo. To obtain information on the function of this RNA polymerase shared subunit we have used S.pombe rpb8 as a naturally altered molecule in heterologous expression assays in S.cerevisiae. Amino acid residue differences within the 67 N-terminal residues contribute to the functional distinction of the two yeast orthologues in S.cerevisiae. Overexpression of the S.cerevisiae largest subunit of RNA polymerase III C160 (Rpc1) allows S.pombe rpb8 to functionally replace ABC14.5 in S.cerevisiae, suggesting a specific genetic interaction between the S.cerevisiae ABC14.5 (Rpb8) and C160 subunits. We provide further molecular and biochemical evidence showing that the heterologously expressed S.pombe rpb8 molecule selectively affects RNApolymerase III but not RNA polymerase I complex assembly. We also report the identification of a S.cerevisiae ABC14.5-G120D mutant which affects RNA polymerase III.  相似文献   

8.
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits.  相似文献   

9.
10.
Eukaryotic RNA polymerases are multisubunit assemblies, whose enzymatic function in the nucleus is intensively studied. However, little is known about the biogenesis of the three RNA polymerases and coupling to nucleo-cytoplasmic transport. Here, we show that Rpc128, the second largest subunit of RNA polymerase III, was mislocalized to the cytoplasm, when a short sequence in the N-terminal domain was deleted. Importantly, nuclear import of other, but not all, RNA polymerase III subunits was impaired in this RPC128DeltaN mutant. These data suggest that RNA polymerase III subunits are not imported independently into the nucleus but may require preassembly into cytoplasmic subcomplexes for coordinated nuclear uptake. We expect these studies to be a starting point to dissect the complex biogenesis pathway of eukaryotic RNA polymerases.  相似文献   

11.
Eukaryotic DNA-dependent RNA polymerases (Pol I-III) share a conserved core of 12 subunits, which is closely related to archaeal RNA polymerases. Rpb8, a subunit found in Pol I, II and III, was thought to be restricted to eukaryotes. We show here that Rpb8 closely resembles an archaeal protein called G, found only in Crenarchaea, which identifies a last missing link between the core structure of archaeal and eukaryotic RNA polymerases.  相似文献   

12.
13.
The RNA polymerase II (Pol II) of the fission yeast Schizosaccharomyces pombe is composed of 12 different polypeptides, Rpb1 to Rpb12, of which five, Rpb5, Rpb6, Rpb8, Rpb10 and Rpb12, are shared among three forms of the RNA polymerase. To get an insight into the control of synthesis and assembly of individual subunits, we have measured the intracellular concentrations of all 12 subunits in S. pombe by quantitative immunoblotting. Results indicate that the levels are low for the three large subunits, Rpb1, Rpb2 and Rpb3, which are the homologues of beta', beta and alpha subunits, respectively, of prokaryotic RNA polymerase. On the other hand, the levels of small-sized subunits were between 2- to 15-fold higher than these three core subunits. The levels of the five common subunits shared among RNA polymerases I, II and III are about 10 times greater than those of the Pol II-specific core subunits. The assembly state of the Rpb proteins was analyzed by glycerol gradient centrifugation of S. pombe whole cell extracts. The three core subunits are mostly assembled in Pol II, but some of the small subunits were detected in the slowly sedimenting fractions, indicating that at least some of the excess Rpb proteins exist in unassembled forms. Based on the intracellular concentration of the least abundant Rpb3 subunit, the total number of Pol II in a growing S. pombe cell was estimated to be about 10,000 molecules. The intracellular distribution of some Pol II subunits was also analyzed by microscopic observation of the green fluorescent protein (GFP)-fused Rpb proteins. In agreement with the biochemical analysis, the GFP-Rpb1 and GFP-Rpb3 fusions were present in the nuclei but the GFP-Rpb4 was detected in the cytoplasm as well as the nuclei.  相似文献   

14.
15.
16.
17.
Subunit 3 (Rpb3) of eukaryotic RNA polymerase II is a homologue of the α subunit of prokaryotic RNA polymerase, which plays a key role in subunit assembly of this complex enzyme by providing the contact surfaces for both β and β′ subunits. Previously we demonstrated that the Schizosaccharomyces pombe Rpb3 protein forms a core subassembly together with Rpb2 (the β homologue) and Rpb11 (the second α homologue) subunits, as in the case of the prokaryotic α2β complex. In order to obtain further insight into the physiological role(s) of Rpb3, we subjected the S. pombe rpb3 gene to mutagenesis. A total of nine temperature-sensitive (Ts) and three cold-sensitive (Cs) S. pombe mutants have been isolated, each (with the exception of one double mutant) carrying a single mutation in the rpb3 gene in one of the four regions (A–D) that are conserved between the homologues of eukaryotic subunit 3. The three Cs mutations were all located in region A, in agreement with the central role of the corresponding region in the assembly of prokaryotic RNA polymerase; the Ts mutations, in contrast, were found in all four regions. Growth of the Ts mutants was reduced to various extents at non-permissive temperatures. Since the metabolic stability of most Ts mutant Rpb3 proteins was markedly reduced at non-permissive temperature, we predict that these mutant Rpb3 proteins are defective in polymerase assembly or the mutant RNA polymerases containing mutant Rpb3 subunits are unstable. In accordance with this prediction, the Ts phenotype of all the mutants was suppressed to varying extents by over-expression of Rpb11, the pairing partner of Rpb3 in the core subassembly. We conclude that the majority of rpb3 mutations affect the assembly of Rpb3, even though their effects on subunit assembly vary depending on the location of the mutation considered.  相似文献   

18.
19.
20.
Eukaryotic RNA polymerase III (Pol III) is a multisubunit enzyme responsible for transcribing tRNA, 5S rRNA, and several small RNAs. Of the 17 subunits in Pol III, the C17 (Rpc17) and C25 (Rpc25) subunits form a stable subcomplex that protrudes from the core polymerase. In this study, we determined the crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe. The subcomplex adopts an elongated shape, and each subunit has two domains. The two subunits in the subcomplex are tightly packed and extensively interact, with a contact area of 2080 Å2. The overall conformation of S. pombe C17/25 is considerably different from the previously reported structure of C17/25 from Saccharomyces cerevisiae, with respect to the position of the C17 HRDC domain, a helix bundle essential for cell viability. In contrast, the S. pombe C17/25 structure is quite similar to those of the Pol II and archaeal counterparts, Rpb4/7 and RpoE/F, respectively, despite the low sequence similarity. A phylogenetic comparison of the C17 subunits among eukaryotes revealed that they can be classified into three groups, according to the length of the interdomain linker. S. pombe C17, as well as Rpb4 and RpoF, belongs to the largest group, with the short linker. On the other hand, S. cerevisiae C17 belongs to the smallest group, with the long linker, which probably enables the subcomplex to assume the alternative conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号