首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work was to determine the alterations in the absorptive and secretory functions of the rat colon after abdominal irradiation and to compare the effects of abdominal and whole-body irradiation. Rats received an abdominal irradiation with 8 to 12 Gy and were studied at 1, 4 and 7 days after exposure. Water and electrolyte absorption was measured in vivo by insertion of an agarose cylinder into the colons of anesthetized rats. In vitro measurements of potential difference, short-circuit current and tissue conductance were performed in Ussing chambers under basal and agonist-stimulated conditions. Most of the changes appeared at 4 days after abdominal irradiation. At this time, a decrease in water and electrolyte absorption in the colon was observed for radiation doses > or = 9 Gy. The response to secretagogues (VIP, 5-HT and forskolin) was attenuated after 10 and 12 Gy. Epithelial integrity, estimated by potential difference and tissue conductance, was altered from 1 to 7 days after 12 Gy abdominal irradiation. These results show that the function of the colon was affected by abdominal irradiation. Comparison with earlier results for total-body irradiation demonstrated a difference of 2 Gy in the radiation dose needed to induce changes in the function of the colon.  相似文献   

2.
A study of the level of fibronectin in blood serum of Wistar rats at different times after gamma-irradiation (7.5 Gy) has demonstrated a considerable increase in its concentration after 3 days. This increase is a function of radiation dose absorbed (within the range from 1 to 10 Gy). The most pronounced changes are observed with serious and extremely serious forms of acute radiation sickness. The administration of cycloheximide 48 h after irradiation removes completely the increase in the level of blood serum fibronectin.  相似文献   

3.
Dexamethasone was evaluated as a treatment for radiation-induced lung, kidney, liver, and spinal cord injuries in rats. One experimental group was partial-body-irradiated (22.5 Gy) with the head, femur, and exteriorized intestine shielded to prevent acute mortality. Other animals received local irradiation to the kidney (20 Gy), liver (25 Gy), or a 1-cm segment of cervical spinal cord (18 to 40 Gy). Following irradiation half of the animals in each radiation group were given drinking water containing 188 micrograms/liter of dexamethasone. Tests were done to assess kidney function (hematocrit, plasma urea nitrogen, ethylenediaminetetraacetic acid clearance), liver function (rose bengal clearance, plasma glutamic oxaloacetic acid transaminase), or spinal cord injury (paralysis). The effectiveness of dexamethasone in preventing radiation injury was tissue specific. Dexamethasone eliminated lethal pleural fluid accumulation after partial-body irradiation and delayed development of kidney dysfunction after local kidney irradiation. As a result, dexamethasone increased the median survival time from 63 to 150 days after partial-body irradiation and from 126 to 175 days after local kidney irradiation. After whole-liver irradiation, development of hepatic functional injury was retarded by dexamethasone treatment but without significantly changing survival time. Dexamethasone had no effect on spinal cord tolerance but significantly shortened the latent period between radiation and paralysis.  相似文献   

4.
An insulin receptor interaction has been studied in rat erythrocytes after whole-body gamma irradiation (1 Gy). Specific binding of insulin was found to increase 30 days following irradiation against the background of a decreased immunoreactive insulin concentration in the blood. A change in the postirradiation activity of insulin receptors is considered as a manifestation of the homeostatic mechanism of "up" regulation in exposed animals.  相似文献   

5.
The effects of fractionated hemithorax irradiation on normal lung tissue were examined by measuring changes in the vascular permeability surface area product (PS) and relative lung blood flow in Sprague-Dawley rats. The rats received five daily fractions per week of either 3.0 or 4.0 Gy for 4 weeks to the left lung. Between 3 and 5 weeks after the start of irradiation, the average PS was approximately 50% above normal for the group of rats that received 3.0 Gy/day and 200-300% above normal in the group of rats that received 4.0 Gy/day. Treatment with cyproheptadine, indomethacin, or theophylline had no effect, but treatment with dexamethasone significantly reduced PS to near normal levels. Left-to-right blood flow ratios in the group of rats that received 3.0 Gy/day decreased to 66% of normal levels by 4 weeks. In the group of rats that received 4.0 Gy/day, blood flow decreased to 46% of normal levels by 4 weeks. Treatment with dexamethasone maintained normal blood flow until the drug dose was reduced. These results agree with earlier studies using single-dose irradiation and indicate that the methods used to measure PS and blood flow are sensitive at low doses.  相似文献   

6.
The effects of external acute irradiation at dose 1.0 Gy on biologic, haematologic and metabolic changes in blood of alloxan-induced diabetic rats were studied. It was found that the deterioration of diabetic animals occurs in different terms after irradiation exposure, resulting in considerable body weight decrease, well-marked hyperglycemia, abrupt falling of leukocytic system parameters, intensification energetic processes of extant lymphocytes, imbalance of lipid metabolism and thyroid state, as well as significant inhibition of 5'-deiodinase activity in liver tissue.  相似文献   

7.
A considerable change in the free amino acid composition of blood serum and hepatic tissue was noted on the 7th and 14th days following total-body X-irradiation of rats with a dose of 2.9 Gy. The total free amino acid content of blood serum increased and that of hepatic tissue decreased by 85% (on an average) as compared to the intact controls. Quantitative changes in the content of individual amino acids were analysed. Polyamine injected enterally for 7 days and parenterally for 3 days after irradiation aids the elimination of the postirradiation changes in the amino acid balance.  相似文献   

8.
The levels of the postirradiation thymidinemia, with an equal degree of the proceeding cell depletion of lymphoid organ tissues caused by the administration of dexamethasone and exposure of rats to 3 Gy radiation, markedly varied. Three days after the injection of the hormone, the organism responded to irradiation by an increase in the concentration of thymidine in blood serum in the same manner as intact animals did. The preirradiation with a dose of 3 Gy reduced sharply the ability of the organism to respond the repeated irradiation (after 3 days) by thymidinemia. There was a lesser increase in the thymidine concentration in the blood after the injection of dexamethasone than after irradiation inducing the same cell depletion of the thymus and spleen.  相似文献   

9.
The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension.  相似文献   

10.
A single external exposure of pregnant rats to 2 Gy gamma-radiation caused changes in the functional status of the thyroid gland in offsprings at varying times of the postnatal development. The disturbance of the thyroid hormones balance in the blood, destruction of the thyroid gland combined with high functional tension of secretory elements, and activation of the thyrotropic function of hypophysis were revealed at remote times after irradiation.  相似文献   

11.
The present study was designed to determine the effect of alloxan-induced diabetes in rabbits on L-[15N]alanine and [15N]glycine kinetic parameters. This process was measured by single-dose administration of 15N-labeled amino acids to postabsorptive control rabbits and alloxan-induced diabetics and insulin-treated diabetic rabbits. Gas chromatography-mass spectrometry was used to determine the 15N enrichment of plasma glycine and alanine. Glycine and alanine pools and turnover rate constants were estimated from isotope enrichment time decay curves. The data from the present study indicate that plasma glycine and alanine turnover rate constants increased by 25-50% after alloxan administration but pool sizes showed only little changes, resulting in highly significant increases in fluxes and metabolic clearance rates of both alanine and glycine following alloxan administration; single-dose crystalline insulin or protamine zinc insulin treatment failed to restore the turnover rate constants of glycine or alanine toward control values and caused a depletion of 50% in glycine pool size; 7 days prolonged treatment with protamine zinc insulin restored alanine and glycine fluxes and metabolic clearance rates towards control postabsorptive values; and the reduction in flux values following insulin treatment is consistent with the reduction in the plasma glucose levels in rabbits. The data suggest that the regulatory mechanisms for uptake and metabolism of circulating glycogenic amino acids no longer are operative as a consequence of insulin deficiency following alloxan administration. Exogenous insulin restored the activity of the regulatory mechanism toward the postabsorptive control state.  相似文献   

12.
The dynamics of malonic dialdehyde (MD) dependence in the blood serum of Vistar line male rats on the intensity of irradiation after a total single irradiation with 60Co gamma-quantums in 1.0 and 5.0 Gy doses (during 30 days); 9.0 Gy (during 15 days) were studied. The MD contents values both in the norm and in 0.5, 1, 2, 4, 6, 8, 10, 15, 20 and 30 days after irradiation are given. The experimental data demonstrated the different sensitivity of the final LPO parameters to the doses of 1.0, 5.0, 9.0 Gy radiation depending on the dose power, the changes of these parameters being kept for a long time after irradiation.  相似文献   

13.
We studied the rat thyroid status depending on the dose of external radiation and the time passed after the exposure. The experiments were carried out on female albino Wistar rats. The doses absorbed amounted to 0.25; 0.5; 1.0; 2.0 and 5.0 Gy. The animals were decapitated after 3, 6, 24 hours and 7, 30, 180 and 365 days following the radiation. The blood serum was assayed for the contents of thyroxin (T4) and triiodothyronine (T3) using a radioimmunological technique. The liver tissue was assayed spectrophotometrically for the activity of thyroid-induced NADP malate dehydrogenase (NADP-MDH). No changes were found in the blood thyroid hormone contents within short periods after the radiation effect. After 6 hours the T4 levels was 1.2-1.3-fold decreased in the blood of rats receiving the radiation doses of 1.0; 2.0; and 5.0 Gy. After a day the T4 concentration was diminished by 1.21-193-fold in all the experimental animals independently of the radiation dose and that of T3--in 2.0 Gy--and 5.0 Gy--irradiated group. After 7 days following the radiation the T4 and T3 contents remained to be decreased by 1.37-1.75 fold and those of NADP-MDH--by 1.3-1.8-fold in all the animal groups. In a month, the low dose-treated animals (0.25, 0.5, 1.0 Gy) showed the level of thyroid hormones reduced to the control values, whereas the 2.0 and 5.0 Gy--treated rats demonstrated this reduction only by 6 months. The decreased concentration of blood thyroid hormones was due not to the activation of their peripheral metabolism, but, probably, to inhibition of their biosynthesis in thyroid cells under conditions of radiation-induced activation of oxidative stress.  相似文献   

14.
目的:观察不同剂量x射线对大鼠精子CRISP2mRNA表达水平的影响,探讨其在电离辐射所致大鼠精子功能改变中的作用。方法:用吸收剂量为1、2、4、和6Gy的x射线分别照射活体SD大鼠的外生殖系统1…4812、24h后,用PCR技术检测精子CRISP2基因mRNA表达水平;用光学显微镜观察精予活力。以未照射组为对照。结果:4、6GyX射线照射不同时间(1、4、8、12、24h时)后大鼠精子的CRISP2mRNA相对表达量均较对照组显著下降(P.〈0.05),其中6Gb,照射24小时后相对表达量最低(P〈0.01),而4Gy照射组与6Gy照射组相比较差异无统计学意义(P〉0.05);2Gyx射线照射8h后CRISP2mRNA相对表达量下降有统计学意义(P〈0.05);2GyX射线照射1、4h后及1GyX射线照射不同时间(1、4、8、12、24la)后大鼠精子的CRISP2mRNA相对表达量较对照组下降,但差异无统计学意义(P〉O.05)。1、2GyX射线照射不同时间(1、4、8、12、24小时)及4GyX射线照射(1、4、8h)后,精子活力与正常对照组相比无明显改变(P〉0.05);4GyX射线照射12、24h后大鼠精子活力显著低于正常对照;6GyX射线照射不同时间(1、4、8、12、24h)后,精子活力明显低于对照组(P〈0.05)。结论:不同剂量X射线照射不同时间可导致SD大鼠精子活力下降,这可能与其下调CRISP2基因的mRNA表达水平有关。  相似文献   

15.
This paper aims to present the study of rats' individual radiosensitivity dependence on their individual aggressiveness. On total irradiation in sublethal doses (1.0, 1.5 and 3.5 Gy) and in doses close to LD50/30 (6, 7 and 8 Gy) there was investigated comparative radiosensitivity of non-aggressive and aggressive rats of Wistar line, as well as that of non-aggressive individuals during provoked aggressiveness by means of blocking serotonin synthesis with intraperitoneal (i/p) injection of 400 mg/kg of parachlorphenylalanine (pCPA). Muricidity served as a criterion for aggressiveness and as a criterion of radiosensitivity--cumulative function of survival, the changes of behavior in "Open feald", serotonine and catecholamine content in various brain structures and the dose dependence on the radiation modification of muricidity. It has been found that after 1 Gy total X-irradiation the rats do not lose aggressiveness. Nevertheless the ethalogical parameters change in considerable degree. In the doses of 1.5 and 3.5 Gy muricidity is eluminated in 15-18 and 5-9 days, correspondingly. I/p injection of pCPA after the elimination of aggressiveness provokes transient muricidity in the same terms and duration as it is in case of non-aggressive rats. The elimination of muricidity is associated with changes in content and distribution of biogenic amines in various structures of brain, as well as with reduction of locomotor and reference-research activity, on the one hand and with an increase of emotionality and stereotype activity, on the other hand. After X-irradiation in 6, 7 and 8 Gy the regression coefficients of the dependence of functions type of survival on irradiation dose in aggressive rats is significantly reliable both in comparison with non-aggressive rats and animals with provoked aggressiveness. The change of mortality-rate per unit of changing irradiation dose not depend on blocking of serotonin synthesis, which deficit is one of the distinct determinant of aggressiveness, on the one hand, and higher radiosensitivity, on the other hand. The obtained data allow to suppose that elimination of muricidity after the irradiation of rats in the sublethal doses is conditioned not only by the consequenses of radiation damage of neurobiological structures responsible for the organization of aggressive behavior but the activation of serotonergic system in the process of restitution after radiation trauma. On the other hand, higher radiosensitivity of aggressive rats compared with non-aggressive ones is connected with low serotonin content, thiols and some other biologically active substances which are endogenous radioprotectors determining individual radioresistance.  相似文献   

16.
目的:通过直线加速器全身照射昆明小鼠建立辐射损伤模型,探索不同放射剂量对小鼠健康状况及涎腺功能和结构的影响。方法:选取八种不同剂量对昆明小鼠行体外全身照射,于照射后一个月内观察小鼠生长情况、体重变化;照射后一周、一个月检测各组小鼠血象的变化;测定放射半数致死剂量;照射后两个月,测定各组小鼠的唾液流量及唾液淀粉酶含量,并对下颌下腺组织切片行HE染色。结果:13Gy和15Gy照射组小鼠的体重逐渐下降,一周后死亡,其余组小鼠体重最终呈增加趋势。X-射线全身照射的半数致死量为10Gy。照射后一周,照射组小鼠的白细胞数目明显降低,与对照组比较有明显统计学差异(P0.01);在其他血象方面,除了7Gy组外,其他照射组与对照组比较也均有统计学差异(P0.05)。照射一个月后,各照射组小鼠的血象均恢复正常。照射后两个月,9Gy组和11Gy组小鼠的唾液流量及唾液淀粉酶含量均显著低于0Gy组,且11Gy组较9Gy组亦明显降低,差异均有统计学意义(P0.05)。随照射剂量的增加,小鼠的下颌下腺腺泡细胞数目逐步减少,结构排列紊乱,组织损伤逐渐加重。结论:X-射线全身照射引起小鼠健康状况受损,免疫功能减低,损伤程度与放射线强度呈剂量依赖性,小鼠半数致死量为10Gy,该剂量适合建立全身放射损伤模型。  相似文献   

17.
Ninety-six CD-1 male rats were exposed to gamma-ray doses (0-25 Gy) in increments of 5 Gy. One femur, the surgically exteriorized GI tract, and the oral cavity were shielded during irradiation to protect against acute mortality from injury to the hematopoietic system, small intestine, and oral cavity. In addition, the thoraxes of half of the animals from each dose group were shielded. At approximately monthly intervals from 2 to 10 months after irradiation the hematocrit, plasma urea nitrogen (PUN), and 51Cr-EDTA clearance were measured. During the study 20 thorax-shielded and 19 thorax-irradiated animals died. All rats whose thoraxes received 25 Gy irradiation and three out of seven rats whose thoraxes received 20 Gy died 1 to 3 months postirradiation with massive pleural fluid accumulation. Shielding the thoraxes prevented this mode of death at these doses. Kidney injury was judged to be the primary cause of death of all thorax-shielded animals and 15- and 20-Gy thorax-irradiated animals. Animals with kidney damage had elevated PUN and reduced 51Cr-EDTA clearance and hematocrits. The relative merits of each of these end points in assessing radiation-induced kidney injury after total-body exposure are discussed.  相似文献   

18.
The effects of single-dose total-body X irradiation (TBI) on the granulocyte/macrophage progenitor cell (GM-CFC) population in bone marrow and blood of dogs were studied for dose levels of 0.78 and 1.57 Gy up to 164 days after irradiation. The blood GM-CFC concentration per milliliter was depressed in the first 7 days in a dose-dependent fashion to 5-16% of normal after 0.78 Gy and to between 0.7 and 5% after 1.57 Gy. The bone marrow GM-CFC concentration per 10(5) mononuclear cells, on the other hand, was initially reduced to about 45% of the average pre-irradiation value after 0.78 Gy and to 23% after 1.57 Gy. The regeneration within the first 30 to 40 days after TBI of the blood granulocyte values and the repopulation of the bone marrow GM-CFC compartment was associated with both a dose-dependent increase in the S-phase fraction of the bone marrow GM-CFC and a dose-dependent increase in colony-stimulating activity (CSA) in the serum. The slow repopulation of circulating blood GM-CFC to about only 50% of normal even between days 157 and 164 after TBI could be related to a correspondingly delayed reconstitution of the mobilizable GM-CFC subpopulation in the bone marrow.  相似文献   

19.
The morphology of nucleated cells in the peripheral blood of rats after single dose irradiation with a dose of 5.5 Gy was followed during 28 days after irradiation. During profound agranulocytopenia and granulocytopenia the number of lymphocyte-like mononuclear cells was increased from the days 7-10 after irradiation and the number of monocyte-like mononuclear cells increased from day 14. The cell population discussed in the paper differed markedly from typical lymphocytes and monocytes in particular cytomorphologic parameters.  相似文献   

20.
To test the efficacy of magnetic resonance spectroscopy (MRS) in identifying radiation-induced brain injury, adult male Fischer 344 rats received fractionated whole-brain irradiation (40 or 45 Gy given in 5-Gy fractions twice a week for 4 or 4.5 weeks, respectively); control rats received sham irradiation. Twelve and 52 weeks after whole-brain irradiation, rats were subjected to high-resolution MRI and proton MRS. No apparent lesions or changes in T(1)- or T(2)-weighted images were noted at either time. This is in agreement with no gross changes being found in histological sections from rats 50 weeks postirradiation. Analysis of the MR spectra obtained 12 weeks after fractionated whole-brain irradiation also failed to show any significant differences (P > 0.1) in the concentration of brain metabolites between the whole-brain-irradiated and sham-irradiated rats. In contrast, analysis of the MR spectra obtained 52 weeks postirradiation revealed significant differences between the irradiated and sham-irradiated rats in the concentrations of several brain metabolites, including increases in the NAA/tCr (P < 0.005) and Glx/tCr (P < 0.001) ratios and a decrease in the mI/tCr ratio (P < 0.01). Although the cognitive function of these rats measured by the object recognition test was not significantly different (P > 0.1) between the irradiated and sham-irradiated rats at 14 weeks postirradiation, it was significantly different (P < 0.02) at 54 weeks postirradiation. These findings suggest that MRS may be a sensitive, noninvasive tool to detect changes in radiation-induced brain metabolites that may be associated with the radiation-induced cognitive impairments observed after prolonged fractionated whole-brain irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号