首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
This paper reports first DNA C-values for 28 angiosperm genera. These include first DNA C-values for 25 families, of which 16 are monocots. Overall familial representation is 47.2 % for angiosperms, but is now much higher for monocots (75 %) and basal angiosperms (73.1 %) than for eudicots (38.7 %). Chromosome counts are reported for 22 taxa, including first records for six genera plus seven species. Unrepresented families will become increasingly enriched for monotypic taxa from obscure locations that are harder to access. Thus, completing familial representation for genome size for angiosperms may prove impossible in any short period, and progress towards this goal will become slower.  相似文献   

2.
BACKGROUND AND AIMS: A key target set at the second Plant Genome Size Workshop, held at the Royal Botanic Gardens, Kew in 2003, was to produce first DNA C-value data for an additional 1 % of angiosperm species, and, within this, to achieve 75 % familial coverage overall (up from approx. 50 %) by 2009. The present study targeted eudicot families for which representation in 2003 (42.5 %) was much lower than monocot (72.8 %) and basal angiosperm (69.0 %) families. METHODS: Flow cytometry or Feulgen microdensitometry were used to estimate nuclear DNA C-values, and chromosome counts were obtained where possible. KEY RESULTS: First nuclear DNA C-values are reported for 20 angiosperm families, including 18 eudicots. This substantially increases familial representation to 55.2 % for angiosperms and 48.5 % for eudicots. CONCLUSIONS: The importance of targeting specific plant families to improve familial nuclear DNA C-value representation is reconfirmed. International collaboration will be increasingly essential to locate and obtain material of unsampled plant families, if the target set by the second Plant Genome Size Workshop is to be met.  相似文献   

3.
Evolution of DNA amounts across land plants (embryophyta)   总被引:4,自引:0,他引:4  
BACKGROUND AND AIMS: DNA C-values in land plants (comprising bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms) vary approximately 1000-fold from approx. 0.11 to 127.4 pg. To understand the evolutionary significance of this huge variation it is essential to evaluate the phylogenetic component. Recent increases in C-value data (e.g. Plant DNA C-values database; release 2.0, January 2003; http://www.rbgkew.org.uk/cval/homepage.html) together with improved consensus of relationships between and within land plant groups makes such an analysis timely. METHODS: Insights into the distribution of C-values in each group of land plants were gained by superimposing available C-value data (4119 angiosperms, 181 gymnosperms, 63 monilophytes, 4 lycophytes and 171 bryophytes) onto phylogenetic trees. To enable ancestral C-values to be reconstructed for clades within land plants, character-state mapping with parsimony and MacClade was also applied. KEY RESULTS AND CONCLUSIONS: Different land plant groups are characterized by different C-value profiles, distribution of C-values and ancestral C-values. For example, the large ( approximately 1000-fold) range yet strongly skewed distribution of C-values in angiosperms contrasts with the very narrow 12-fold range in bryophytes. Further, character-state mapping showed that the ancestral genome sizes of both angiosperms and bryophytes were reconstructed as very small (i.e. < or =1.4 pg) whereas gymnosperms and most branches of monilophytes were reconstructed with intermediate C-values (i.e. >3.5, <14.0 pg). More in-depth analyses provided evidence for several independent increases and decreases in C-values; for example, decreases in Gnetaceae (Gymnosperms) and heterosperous water ferns (monilophytes); increases in Santalales and some monocots (both angiosperms), Pinaceae, Sciadopityaceae and Cephalotaxaceae (Gymnosperms) and possibly in the Psilotaceae + Ophioglossaceae clade (monilophytes). Thus, in agreement with several focused studies within angiosperm families and genera showing that C-values may both increase and decrease, it is apparent that this dynamic pattern of genome size evolution is repeated on a broad scale across land plants.  相似文献   

4.
Genome size varies extensively across the flowering plants, which has stimulated speculation regarding the ancestral genome size of these plants and trends in genome evolution. We investigated the evolution of C-values across the angiosperms using a molecular phylogenetic framework and C-values not previously available for crucial basal angiosperms, including Amborella, Illiciaceae, and Austrobaileya. Reconstructions of genome size across the angiosperms and extant gymnosperms indicate that the ancestral genome size for angiosperms is very small (1C ≤ 1.4 pg), in agreement with an earlier analysis of Leitch et al. (1998). Furthermore, a very small genome size (1C ≤ 1.4 pg) is ancestral not only for the angiosperms in general, but also for most major clades of flowering plants, including the monocots and the eudicots. The ancestral genome of core eudicots may also have been very small given that very low 1C-values appear to be ancestral for major clades of core eudicots, such as Caryophyllales, Saxifragales, and asterids. Very large genomes occur in clades that occupy derived positions within the monocots and Santalales.  相似文献   

5.
Morgan HD  Westoby M 《Annals of botany》2005,96(7):1321-1330
BACKGROUND AND AIMS: Species' 2C-values (mass of DNA in G(1) phase 2n nuclei) vary by at least four orders of magnitude among seed plants. The 2C-value has been shown to be co-ordinated with a number of other species traits, and with environmental variables. A prediction that species 2C-values are negatively related to leaf life span (LL) and leaf mass per area (LMA) is tested. These leaf traits are components of a major dimension of ecological variation among plant species. METHODS: Flow cytometry was used to measure the 2C-values for 41 Australian seed plant species, 40 of which were new to the literature. Where possible, LL and LMA data from the global literature were combined with 2C-values from our data set and online C-value databases. KEY RESULTS: Across all species, weak positive relationships were found between 2C-values and both LL and LMA; however, these did not reflect the relationships within either angiosperms or gymnosperms. Across 59 angiosperm species, there were weak negative relationships between 2C-values and both LL (r2 = 0.13, P = 0.005) and LMA (r2 = 0.15, P = 0.002). These relationships were the result of shifts to longer LL and greater LMA in woody compared with herbaceous growth forms, with no relationships present within growth forms. It was not possible to explain a positive relationship between 2C-values and LMA (r2 = 0.30, P = 0.024) across 17 gymnosperm species. The 2C-value was not related to LL or LMA either across species within orders (except for LMA among Pinales), or as radiation divergences in a model phylogeny. CONCLUSIONS: Gymnosperms appear to vary along a spectrum different from angiosperms. Among angiosperms, weak negative cross-species relationships were associated with growth form differences, and traced to a few divergences deep in the model phylogeny. These results suggest that among angiosperms, nuclear DNA content and leaf strategy are unrelated.  相似文献   

6.
Nuclear DNA C-values Complete Familial Representation in Gymnosperms   总被引:6,自引:3,他引:3  
The gymnosperms are a monophyletic yet diverse group of woodytrees with approx. 730 extant species in 17 families. A recentsurvey showed that DNA C-values were available for approx. 16%of species, but for only 12 of the 17 families. This paper completesfamilial representation reporting first C-values for the fiveremaining families: Boweniaceae, Stangeriaceae, Welwitschiaceae,Cephalotaxaceae and Sciadopityaceae. C-values for nine Ephedraand two Gnetum species are also reported. C-values are now availablefor 152 (21%) species. Analysis confirms that gymnosperms arecharacterized by larger C-values than angiosperms (modal 1Cof gymnosperms = 15.8 pg compared with 0.6 pg in angiosperms)although the range (1C = 2.25–32.20 pg) is smaller thanthat in angiosperms (1C = 0.05–127.4 pg). Given completefamilial coverage for C-values and increasing consensus in gymnospermphylogeny, the phylogenetic component of C-value variation wasalso investigated by comparing the two datasets. This analysisrevealed that ancestral gymnosperms (represented by cycads and/orGinkgo; mean genome size = 14.71 pg) probably had larger genomes thanancestral angiosperms. Copyright 2001 Annals of Botany Company Gymnosperm DNA amounts, C-values, phylogeny, ancestral genome size, Cycadales, Ginkgo, Gnetales, conifers, Pinaceae  相似文献   

7.
郭水良  于晶  李丹丹  周平  方其  印丽萍 《生态学报》2015,35(19):6516-6529
为了评估DNA C-值和基因组大小(genome size)在植物入侵性评估中的价值,应用流式细胞仪测定了长三角及邻近地区138种草本植物的核DNA含量,其中111种为首次报道。在此基础上比较了不同植物类群这两个值的差异,特别是入侵性与非入侵性植物这两个值的差异。结果表明:(1)138种草本植物平均DNA C-值为1.55 pg,最大者是最小者的37.17倍。127个类群平均基因组大小为1.08 pg,最大者是最小者的34.11倍;(2)统计了菊科(Asteraceae)、禾本科(Poaceae)、石竹科(Caryophyllaceae)、十字花科(Brassicaceae)、玄参科(Scrophulariaceae)、蓼科(Polygonaceae)、唇形科(Labiatae)和伞形科(Umbelliferae)的DNA C-值和基因组大小,发现禾本科植物的这两个值显著地大于其他7个科(P0.01)。单子叶的DNA C-值和基因组极显著地大于双子叶植物(P0.01);(3)杂草比非杂草具有更低的DNA C-值(P0.01)和基因组大小(P0.001);与DNA C-值相比,基因组大小在这两个类群之间的差异更为明显(P0.001),这种现象也体现在菊科植物中。随着基因组(X1)和DNA C-值(X2)由大变小,植物的杂草性(入侵性,Y)由弱变强,两者关系分别符合:Y=2.2334-1.2847 ln(X1)(r=0.4612,P0.01)和Y=2.4421-0.7234 ln(X2)(r=0.2522,P0.01),DNA C-值和基因组大小可以作为植物入侵性评估的一个指标;(4)多倍体杂草的基因组极明显地小于二倍体杂草(P0.01),前者为后者的0.63倍。在非杂草中,多倍体基因组比二倍体的略小,前者仅为后者的0.84倍,差异不显著(P0.5)。菊科植物中多倍体杂草的基因组也显著地小于二倍体杂草(P0.1)。基因组变小和多倍体化相结合,进一步增强了植物的入侵性。在多倍体植物入侵性评估中,基因组大小比DNA C-值更有价值。  相似文献   

8.
Nuclear holoploid genome sizes (C-values) have been estimated to vary about 800-fold in angiosperms, with the smallest established 1C-value of 157 Mbp recorded in Arabidopsis thaliana. In the highly specialized carnivorous family Lentibulariaceae now three taxa have been found that exhibit significantly lower values: Genlisea margaretae with 63 Mbp, G. aurea with 64 Mbp, and Utricularia gibba with 88 Mbp. The smallest mitotic anaphase chromatids in G. aurea have 2.1 Mbp and are thus of bacterial size (NB: E. coli has ca. 4 Mbp). Several Utricularia species range somewhat lower than A. thaliana or are similar in genome size. The highest 1C-value known from species of Lentibulariaceae was found in Genlisea hispidula with 1510 Mbp, and results in about 24-fold variation for Genlisea and the Lentibulariaceae. Taking into account these new measurements, genome size variation in angiosperms is now almost 2000-fold. Genlisea and Utricularia are plants with terminal positions in the phylogeny of the eudicots, so that the findings are relevant for the understanding of genome miniaturization. Moreover, the Genlisea-Utricularia clade exhibits one of the highest mutational rates in several genomic regions in angiosperms, what may be linked to specialized patterns of genome evolution. Ultrasmall genomes have not been found in Pinguicula, which is the sister group of the Genlisea-Utricularia clade, and which does not show accelerated mutational rates. C-values in Pinguicula varied only 1.7-fold from 487 to 829 Mbp.  相似文献   

9.
Nuclear DNA Amounts in Pteridophytes   总被引:2,自引:2,他引:0  
DNA amounts (C-value and genome size) are much-used biodiversitycharacters. A workshop held at Kew in 1997 identified majorgaps in our knowledge of plant DNA amounts, recommending targetsfor new work to fill them. Murray reviewed non-angiosperm plantsnoting that representation of pteridophyte species (approx.0.42%) was poor, while locating C-value data for them was verydifficult. The workshop confirmed the need to make data forother groups besides angiosperms accessible for reference purposes.This paper pools DNA C-values for 48 pteridophyte species fromeight original sources into one reference source, and fulfilsa key workshop recommendation for this group. Comparing thesedata shows that nuclear 1C-values in pteridophytes vary approx.1000-fold, from 0.055 pg in Selaginella species to about 55pg in Ophioglossum petiolatum. Genome size estimates for 25pteridophytes vary approx. 200-fold from 0.055 to 10.7 pg, andthe mean genome sizes in diploids and polyploids (5.15 and 4.59pg, respectively) are not significantly different. Wider comparisonsshow that ranges of genome sizes in the major groups of landplants are very different. Those in bryophytes and pteridophytesare narrow compared with those in gymnosperms and angiosperms.The data indicate that the origin of land plants possibly involveda first major increase in genome size in the evolution of vascularplants, while a second such increase occurred later in gymnosperms.C-values for pteridophytes remain very few, but conversely opportunitiesfor new work on them are many. Copyright 2001 Annals of BotanyCompany Pteridophyte DNA amounts, DNA C-values, nuclear genome sizes  相似文献   

10.
The adaptive significance of nuclear DNA variation in angiosperms is still widely debated. The discussion mainly revolves round the causative factors influencing genome size and the adaptive consequences to an organism according to its growth form and environmental conditions. Nuclear DNA values are now known for 3874 angiosperm species (including 773 woody species) from over 219 families (out of a total of 500) and 181 species of woody gymnosperms, representing all the families. Therefore, comparisons have been made on not only angiosperms, taken as a whole, but also on the subsets of data based on taxonomic groups, growth forms, and environment. Nuclear DNA amounts in woody angiosperms are restricted to less than 23.54 % of the total range of herbaceous angiosperms; this range is further reduced to 6.8 % when woody and herbaceous species of temperate angiosperms are compared. Similarly, the tropical woody dicots are restricted to less than 50.5 % of the total range of tropical herbaceous dicots, while temperate woody dicots are restricted to less than 10.96 % of the total range of temperate herbaceous dicots. In the family Fabaceae woody species account for less than 14.1 % of herbaceous species. Therefore, in the total angiosperm sample and in subsets of data, woody growth form is characterized by a smaller genome size compared with the herbaceous growth form. Comparisons between angiosperm species growing in tropical and temperate regions show highly significant differences in DNA amount and genome size in the total angiosperm sample. However, when only herbaceous angiosperms were considered, significant differences were obtained in DNA amount, while genome size showed a non-significant difference. An atypical result was obtained in the case of woody angiosperms where mean DNA amount of tropical species was almost 25.04 % higher than that of temperate species, which is because of the inclusion of 85 species of woody monocots in the tropical sample. The difference becomes insignificant when genome size is compared. Comparison of tropical and temperate species among dicots and monocots and herbaceous monocots taken separately showed significant differences both in DNA amount and genome size. In herbaceous dicots, while DNA amount showed significant differences the genome size varies insignificantly. There was a non-significant difference among tropical and temperate woody dicots. In three families, i.e., Poaceae, Asteraceae, and Fabaceae the temperate species have significantly higher DNA amount and genome size than the tropical ones. Woody gymnosperms had significantly more DNA amount and genome size than woody angiosperms, woody eudicots, and woody monocots. Woody monocots also had significantly more DNA amount and genome size than woody eudicots. Lastly, there was no significant difference between deciduous and evergreen hardwoods. The significance of these results in relation to present knowledge on the evolution of genome size is discussed.  相似文献   

11.
Nuclear DNA amounts in angiosperms: progress, problems and prospects   总被引:15,自引:0,他引:15  
BACKGROUND: The nuclear DNA amount in an unreplicated haploid chromosome complement (1C-value) is a key diversity character with many uses. Angiosperm C-values have been listed for reference purposes since 1976, and pooled in an electronic database since 1997 (http://www.kew.org/cval/homepage). Such lists are cited frequently and provide data for many comparative studies. The last compilation was published in 2000, so a further supplementary list is timely to monitor progress against targets set at the first plant genome size workshop in 1997 and to facilitate new goal setting. SCOPE: The present work lists DNA C-values for 804 species including first values for 628 species from 88 original sources, not included in any previous compilation, plus additional values for 176 species included in a previous compilation. CONCLUSIONS: 1998-2002 saw striking progress in our knowledge of angiosperm C-values. At least 1700 first values for species were measured (the most in any five-year period) and familial representation rose from 30 % to 50 %. The loss of many densitometers used to measure DNA C-values proved less serious than feared, owing to the development of relatively inexpensive flow cytometers and computer-based image analysis systems. New uses of the term genome (e.g. in 'complete' genome sequencing) can cause confusion. The Arabidopsis Genome Initiative C-value for Arabidopsis thaliana (125 Mb) was a gross underestimate, and an exact C-value based on genome sequencing alone is unlikely to be obtained soon for any angiosperm. Lack of this expected benchmark poses a quandary as to what to use as the basal calibration standard for angiosperms. The next decade offers exciting prospects for angiosperm genome size research. The database (http://www.kew.org/cval/homepage) should become sufficiently representative of the global flora to answer most questions without needing new estimations. DNA amount variation will remain a key interest as an integrated strand of holistic genomics.  相似文献   

12.

Background and Aims

The amount of DNA in an unreplicated haploid nuclear genome (C-value) ranges over several orders of magnitude among plant species and represents a key metric for comparing plant genomes. To extend previously published datasets on plant nuclear content and to characterize the DNA content of many species present in one region of North America, flow cytometry was used to estimate C-values of woody and herbaceous species collected in Wisconsin and the Upper Peninsula of Michigan, USA.

Methods

A total of 674 samples and vouchers were collected from locations across Wisconsin and Michigan, USA. From these, C-value estimates were obtained for 514 species, subspecies and varieties of vascular plants. Nuclei were extracted from samples of these species in one of two buffers, stained with the fluorochrome propidium iodide, and an Accuri C-6 flow cytometer was used to measure fluorescence peaks relative to those of an internal standard. Replicate extractions, coefficients of variation and comparisons to published C-values in the same and related species were used to confirm the accuracy and reliability of our results.

Key Results and Conclusions

Prime C-values for 407 taxa are provided for which no published data exist, including 390 angiosperms, two gymnosperms, ten monilophytes and five lycophytes. Non-prime reports for 107 additional taxa are also provided. The prime values represent new reports for 129 genera and five families (of 303 genera and 97 families sampled). New family C-value maxima or minima are reported for Betulaceae, Ericaceae, Ranunculaceae and Sapindaceae. These data provide the basis for phylogenetic analyses of C-value variation and future analyses of how C-values covary with other functional traits.  相似文献   

13.
First Nuclear DNA C-values for Another 25 Angiosperm Families   总被引:5,自引:5,他引:0  
Nuclear DNA C-value is an important genomic biodiversity characterwith many uses. An international workshop sponsored by Annalsof Botany and held at the Royal Botanic Gardens, Kew, UK, in1997 identified major gaps in our knowledge of plant DNA C-valuesand recommended targets for new work. Improved taxonomic coveragewas highlighted as a key need for angiosperms, especially atthe familial level. In 1997 C-values were known for only approx.32% of angiosperm families; a goal of complete familial representationby 2002 was recommended. A review published in 2000 (Bennettet al.;Annals of Botany86: 859–909) noted poor progresstowards this aim: of the 691 first C-values for species only12 (1.7%) were for unrepresented families. We began new workto address this in 1999, reporting first DNA C-values for 25angiosperm families in 2001 (Hanson et al.;Annals of Botany87:251–258). Here we report first DNA C-values for a further25 angiosperm families, increasing familial coverage in angiospermsto approx. 45%. Such targeting remains essential to approachthe goal set by the 1997 workshop of familial coverage for angiospermswithin 5 years. The 4C DNA amounts presented here range from0.76 pg (similar toArabidopsis thaliana ) in Roridula gorgonias(Roridulaceae)to 29.74 pg in Gunnera manicata(Gunneraceae). 1C values were< 3.5 pg in 23 of the 25 families; these data provide furthersupport for the view that ancestral angiosperms almost certainlyhad small genomes (defined as 1C  相似文献   

14.
Nuclear DNA Amounts in Mosses (Musci)   总被引:7,自引:6,他引:1  
Voglmayr  Hermann 《Annals of botany》2000,85(4):531-546
A comparative investigation into nuclear DNA amounts using flowcytometry and video-based Feulgen densitometry was carried outin 289 accessions of 138 different moss taxa (Bryatae), originatingfrom Austria, Switzerland, Spain, Mexico and the USA. Samplingincluded species from all major moss clades (except Sphagnum).Flow cytometry data agreed highly with the Feulgen data, whichonce again demonstrates the high reliability of both methodsfor DNA amount determination. For the first time, extensivedata on absolute C-values of mosses are available. Haploid DNAcontents (1C) ranged from 0.174 to 2.16 pg, which representsonly about a 12-fold variation. This low C-value variation isremarkable when compared to angiosperms which vary approx. 1000-fold.C-values are usually relatively constant within genera and evenfamilies; however, genera with varying C-values also exist.From the low frequency observed, secondary polyploidy playsonly a minor role in mosses. Possible reasons for the low C-valuevariation are discussed. Copyright 2000 Annals of Botany Company Mosses, Bryatae, genome size, nuclear DNA amounts, C-value variation, Feulgen, flow cytometry, densitometry, image analysis  相似文献   

15.
BACKGROUND AND AIMS: Little information is available on DNA C-values for the New Zealand flora. Nearly 85 % of the named species of the native vascular flora are endemic, including 157 species of Poaceae, the second most species-rich plant family in New Zealand. Few C-values have been published for New Zealand native grasses, and chromosome numbers have previously been reported for fewer than half of the species. The aim of this research was to determine C-values and chromosome numbers for most of the endemic and indigenous Poaceae from New Zealand. SCOPE: To analyse DNA C-values from 155 species and chromosome numbers from 55 species of the endemic and indigenous grass flora of New Zealand. KEY RESULTS: The new C-values increase significantly the number of such measurements for Poaceae worldwide. New chromosome numbers were determined from 55 species. Variation in C-value and percentage polyploidy were analysed in relation to plant distribution. No clear relationship could be demonstrated between these variables. CONCLUSIONS: A wide range of C-values was found in the New Zealand endemic and indigenous grasses. This variation can be related to the phylogenetic position of the genera, plants in the BOP (Bambusoideae, Oryzoideae, Pooideae) clade in general having higher C-values than those in the PACC (Panicoideae, Arundinoideae, Chloridoideae + Centothecoideae) clade. Within genera, polyploids typically have smaller genome sizes (C-value divided by ploidy level) than diploids and there is commonly a progressive decrease with increasing ploidy level. The high frequency of polyploidy in the New Zealand grasses was confirmed by our additional counts, with only approximately 10 % being diploid. No clear relationship between C-value, polyploidy and rarity was evident.  相似文献   

16.
The evolutionary significance of the c . 1000-fold range of DNA C-values in angiosperms (1C =  c . 0.1–127.4 pg) has often attracted interest. A recent analysis, which superimposed available C-value data onto the angiosperm phylogeny, that placed Ceratophyllaceae as the most basal angiosperm family led to the conclusion that ancestral angiosperms were characterized by small genomes (defined as 1C £ 3.5 pg). However, with the recent increase in DNA sequence data and large-scale phylogenetic analyses, strong support is now provided for Amborellaceae and/or Nymphaeaceae as the most basal angiosperm families, followed by Austrobaileyales (comprising Schisandraceae, Trimeniaceae and Austrobaileyaceae). Together these five families comprise the ANITA grade. The remaining basal angiosperm families (Ceratophyllaceae, Chloranthaceae and magnoliids), together with monocotyledons and eudicotyledons, form a strongly supported clade. A survey showed that C-value data were scarce in the basal angiosperm families, especially the ANITA grade. The present paper addresses these phylogenetic gaps by providing C-value estimates for each family in ANITA, together with C-values for species in Chloranthaceae, Ceratophyllaceae and a previously unrepresented family in the magnoliids, the Winteraceae.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 175–179.  相似文献   

17.
The nuclear DNA content of angiosperms varies by several orders of magnitude. Previous studies suggest that variation in 2C DNA content (i.e. the amount of DNA in G1 phase nuclei, also referred to as the 2C-value) is correlated with environmental factors, but there are conflicting reports in the literature concerning the nature of these relationships. We examined variation in 2C DNA content for 401 species in the ecologically diverse California flora in relation to the mean July maximum temperature, January minimum temperature, and annual precipitation within the geographical ranges of these species. Species with small 2C-values predominate in all environments. Species with large 2C-values occur at intermediate July maximum temperatures, and decline in frequency at both extremes of the July temperature gradient, and with decreasing annual precipitation. Our analysis demonstrates the utility of quantile regression for statistical inference of complex distributions such as these. The method supports our observation that relationships between nuclear DNA content and environmental factors are stronger for species with large 2C-values.  相似文献   

18.
付改兰  冯玉龙 《生态学杂志》2007,26(10):1590-1594
用流式细胞仪测定了8科10属13种外来入侵植物、6种本地植物和1种外来非入侵植物的核DNAC-值。结果表明:作为整体,外来入侵植物的平均核DNAC-值显著低于本地种和外来非入侵种,但对同属不同类型植物进行比较,未发现一致的规律;在4个既包含外来入侵种又包含本地种的属中,泽兰属(Eupatorium)和鬼针草属(Bidens)外来入侵种的核DNAC-值显著低于同属本地种,莲子草属(Alternanthera)的2种外来入侵植物中仅有1个种的核DNAC-值显著低于同属本地种,而草胡椒属(Peperomia)外来入侵种的核DNAC-值显著高于同属本地种;表明核DNAC-值与外来植物入侵性无必然联系。  相似文献   

19.
Nuclear DNA C-values and genome size are important biodiversity characters with fundamental biological significance. Yet C-value data for pteridophytes, a diverse group of vascular plants with approx. 9000 extant species, remain scarce. A recent survey by Bennett and Leitch (2001, Annals of Botany 87: 335-345) found that C-values were reported for only 48 pteridophyte species. To improve phylogenetic representation in this group and to check previously reported estimates, C-values for 30 taxa in 17 families were measured using flow cytometry for all but one species. This technique proved generally applicable, but the ease with which C-value data were generated varied greatly between materials. Comparing the new data with those previously published revealed several large discrepancies. After discounting doubtful data, C-values for 62 pteridophyte species remained acceptable for analysis. The present work has increased the number of such species' C-values by 93 %, and more than doubled the number of families represented (from 10 to 21). Analysis shows that pteridophyte C-values vary approx. 450-fold, from 0-16 pg in Selaginella kraussiana to 72.7 pg in Psilotum nudum var. gasa. Superimposing C-value data onto a robust phylogeny of pteridophytes suggests some possible trends in C-value evolution and highlights areas for future work.  相似文献   

20.
论DNA C-值与植物入侵性的关系   总被引:12,自引:1,他引:12  
倪丽萍  郭水良 《生态学报》2005,25(9):2372-2381
外来植物的入侵已引起世界普遍关注,强调并迅速提高对外来植物的预警能力是目前首当其冲的任务,由此,如何预测植物的入侵能力,也就成为入侵生态学的一个核心问题。20世纪90年代以来,关于植物入侵争论的焦点集中于入侵植物本身的生物学特点或入侵生境特点,然而,争议多于结论,至今未能找出有效预测外来植物入侵性的答案。着重从DNAC-值与植物入侵性关系这一角度进行论述。自20世纪30年代以来,染色体数目、大小、倍性在细胞水平的变化被认为可能与植物入侵性相关,因为染色体数目、大小变化是物种在细胞水平上的一种表型变异形式,而细胞水平累积的效应有可能决定着植物整体水平上对环境的适应能力,从而决定植物的分布范围,最终与入侵性相关。但是,这些领域的研究也没有得到一致的结论。近年来,人们将注意力转移至被子植物DNAC-值变化在植物环境适应中的生物学意义。现有资料表明,DNAC-值与细胞大小、体积、重量、发育速率等细胞水平上的表型特征存在正相关关系,这些与核型相关的DNAC-值的影响效应,可扩展到多细胞植物有机体的发育速率,在植物生活史的各个阶段起作用,其中就影响到两个受时间因子限制同时又与植物分布相关联的特征——最短世代时间及生活周期类型,而许多入侵成功植物即表现为世代时间短等特点,对于入侵性植物,其不可避免会受生长时间及分布环境的限制,如能保证其在这两方面占有优势便能入侵成功。已有研究结果表明,某些外来入侵种比同属其它种类具有较低的核DNA含量,由此,提出通过研究植物DNAC值,就有可能预测植物入侵能力的强弱,低DNAC-值的植物具有更强的适应环境的能力,即与入侵性大小呈负相关,这为发现新的植物入侵性预测指标提供了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号