共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究白介紊-18(Interleukin-18,IL-18)在被动吸烟诱导的慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)大鼠中的表达变化.方法 将20只大鼠随机分为2组,即正常对照组和COPD模型组.应用单纯被动吸烟法建立大鼠COPD模型,香烟烟雾暴露时间为6个月.利用酶联免疫吸附法测定2组大鼠血清和支气管肺泡灌洗液(bronchoal veolar lavage fluid,BALF)中的IL-18浓度,用实时定量RT-PCR法测定BALF中IL-18 mRNA的表达水平,用HE染色法观察肺组织形态学改变,用免疫组织化学染色法检测IL-18在肺组织中的表达.结果 1.COPD模型组血清和BALF中的IL-18浓度较正常对照组显著增加(P<0.01);2.COPD模型组BALF中IL-18 mRNA的表达水平较正常对照组显著增高(P<0.01);3.COPD模型组肺组织中IL-18的表达较正常对照组显著增加(P<0.01).结论 被动吸烟诱导的COPD大鼠外周血和肺部均高表达IL-18,提示IL-18在吸烟所致的COPD发病机制中可能起重要作用. 相似文献
2.
《Biomarkers》2013,18(8):715-730
Background: Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease with associated systemic effects.Objective: To use gene expression microarrays in peripheral blood leukocytes of current and former cigarette smokers to identify differences associated with COPD.Materials and methods: Random forest modelling and a split-sample case–control approach were used to identify candidate predictors.Results: We identified 1013 genes and one smoking exposure variable that differentiated current and former smokers with or without COPD. This predictor set was reduced to a nine-gene classifier (IL6R, CCR2, PPP2CB, RASSF2, WTAP, DNTTIP2, GDAP1, LIPE and RPL14).Conclusion: These gene expression profiles represent potential biomarkers for COPD and may help increase mechanistic understanding of the disease. 相似文献
3.
Marija Stankovi Valentina orevi Andrija Tomovi Ljudmila Nagorni-Obradovi Nataa Petrovi-Stanojevi Mirjana Kova
Dragica Radojkovi 《Journal of Medical Biochemistry》2023,42(1):94
BackgroundChronic obstructive pulmonary disease (COPD) is a complex disorder with unexplained heritability. Interactions of genetic and environmental factors are thought to be crucial in COPD. So, we aim to examine interactions of the endothelial nitric oxide synthase (eNOS) and angiotensin converting enzyme (ACE) genes and cigarette smoking in COPD.MethodsThe eNOS G 894T and ACE ID variants were analyzed in 122 COPD patients and 200 controls from Serbia. The effect of the variants on COPD was assessed by logistic regression. Interactions between eNOS, ACE and cigarette smoking in COPD were evaluated using a case-control model. Interaction between the genes was analyzed in silico.ResultsNo effect of the eNOS G 894T and ACE ID variants on COPD was found in our study. Gene-gene interaction between the eN OS T T and A CE D was identified (p=0.033) in COPD. The interaction is realized within the complex network of biochemical pathways. Gene-environment interactions between the eNOS T and cigarette smoking (p=0.013), and the ACE II and cigarette smoking (p=0.009) were detected in COPD in our study.ConclusionsThis is the first research to reveal interactions of the eNOS and ACE genes and cigarette smoking in COPD progressing our understanding of COPD heritability and contributing to the development of appropriate treatments 相似文献
4.
Tillie L Hackett Marco Scarci Lu Zheng Wan Tan Tom Treasure Jane A Warner 《Respiratory research》2010,11(1):180
Background
There is accumulating evidence that oxidative stress plays an important role in the pathophysiology of chronic obstructive pulmonary disease (COPD). One current hypothesis is that the increased oxidant burden in these patients is not adequately counterbalanced by the lung antioxidant systems.Objective
To determine the levels of oxidised human serum albumin (HSA) in COPD lung explants and the effect of oxidation on HSA degradation using an ex vivo lung explant model.Methods
Parenchymal lung tissue was obtained from 38 patients (15F/23M) undergoing lung resection and stratified by smoking history and disease using the GOLD guidelines and the lower limit of normal for FEV1/FVC ratio. Lung tissue was homogenised and analysed by ELISA for total levels of HSA and carbonylated HSA. To determine oxidised HSA degradation lung tissue explants were incubated with either 200 μg/ml HSA or oxidised HSA and supernatants collected at 1, 2, 4, 6, and 24 h and analysed for HSA using ELISA and immunoblot.Results
When stratified by disease, lung tissue from GOLD II (median = 38.2 μg/ml) and GOLD I (median = 48.4 μg/ml) patients had lower levels of HSA compared to patients with normal lung function (median = 71.9 μg/ml, P < 0.05). In addition the number of carbonyl residues, which is a measure of oxidation was elevated in GOLD I and II tissue compared to individuals with normal lung function (P < 0.05). When analysing smoking status current smokers had lower levels of HSA (median = 43.3 μg/ml, P < 0.05) compared to ex smokers (median = 71.9 μg/ml) and non-smokers (median = 71.2 μg/ml) and significantly greater number of carbonyl residues per HSA molecule (P < 0.05). When incubated with either HSA or oxidised HSA lung tissue explants rapidly degraded the oxidised HSA but not unmodified HSA (P < 0.05).Conclusion
We report on a reliable methodology for measuring levels of oxidised HSA in human lung tissue and cell culture supernatant. We propose that differences in the levels of oxidised HSA within lung tissue from COPD patients and current smokers provides further evidence for an oxidant/antioxidant imbalance and has important biological implications for the disease.5.
Cardiovascular diseases and cancer (especially lung cancer) are leading causes of morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). Some have implicated systemic inflammation, which is commonly observed in COPD, as the potential mechanistic bridge between COPD and these disorders. This concept has been supported by animal studies especially in rabbits, which have clearly demonstrated the effect of local lung inflammation on systemic inflammation and on the progression of atherosclerosis and by cross-sectional population-based studies, which have shown a significant relationship between systemic inflammation, as measured by circulating C-reactive protein (CRP) and the risk of cardiovascular diseases in COPD patients. These data have been further extended by a recent study that has elucidated the temporal nature of the relationship between systemic inflammation and the risk of cardiovascular events and cancer in COPD patients. This study showed that baseline CRP levels predicted the incidence of cardiovascular events and cancer-specific mortality over 7 to 8 years of follow-up. CRP levels also predicted all-cause mortality. Collectively, these data indicate that systemic inflammation may play an important role in mediating the extra-pulmonary complications of COPD. Systemic inflammation may contribute substantially to the overall morbidity and mortality of COPD patients. 相似文献
6.
Ji-Yong Moon Fernando Sergio Leitao Filho Kimeya Shahangian Hiroto Takiguchi 《Expert review of proteomics》2013,10(11):923-935
ABSTRACT Introduction: Chronic obstructive pulmonary disease (COPD) is a heterogeneous set of disorders, characterized by airflow limitation, and reduced lung function. Despite increasing knowledge regarding its pathophysiology, there has been limited advancement in therapeutics and the current treatment strategy is symptom management and prevention of exacerbations. Areas covered: Biomarkers represent important tools for the implementation of precision medicine. As fundamental molecules of all living processes, proteins could provide crucial information about how genes interact with the environment. Proteomics studies could act as important tools in identifying reliable biomarkers to enable a more precise therapeutic approach. In this review, we will explore the most promising blood and sputum protein biomarkers in COPD that have been consistently reported in the literature. Expert commentary: Given the complexity of COPD, no single protein biomarker has been able to improve the outcomes of COPD patients. According to preliminary studies, precision medicine in COPD will likely require a combination of different proteins in a biomarker panel for clinical translation. With advancements in current mass spectrometry techniques, an enhancement in the identification of new biomarkers will be observed, and improvements in sequence database search can fill in potential gaps between biomarker discovery and patient care. 相似文献
7.
Vanja Radišić Biljak Lada Rumora Ivana Čepelak Dolores Pancirov Sanja Popović‐Grle Jasna Sorić Tihana Žanić Grubišić 《Cell biochemistry and function》2010,28(6):448-453
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidant/antioxidant imbalance. Glutathione is the most abundant cellular low‐molecular weight thiol and the glutathione redox cycle is the fundamental component of the cellular antioxidant defence system. Concentration of total glutathione and catalytic activities of glutathione peroxidase and glutathione reductase were determined in peripheral blood of patients (n = 109) and healthy subjects (n = 51). Concentration of total glutathione in patients was not changed in comparison to healthy controls. However, we found statistically significant difference between patients with moderate and severe disease stages. Glutathione reductase activity was increased, while glutathione proxidase activity was decreased in the patients with COPD, when compared to healthy controls. We found no significant difference in glutathione peroxidase and glutathione reductase activities between stages. Patients who smoked had lower concentration of total glutathione compared with former smokers and never‐smoking patients. Lung function parameters were inversely associated with glutathione level. Evidence is presented for differential modulation of glutathione peroxidase and glutathione reductase activities in peripheral blood of patients with stable COPD. We suppose that in addition to glutathione biosynthesis, glutathione reductase‐dependent regulation of the glutathione redox state is vital for protection against oxidative stress. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
8.
Margot ME Gosman Dirkje S Postma Judith M Vonk Bea Rutgers Monique Lodewijk Mieke Smith Marjan A Luinge Nick HT ten Hacken Wim Timens 《Respiratory research》2008,9(1):1-9
Background
Surfactant protein D (SP-D), an innate immune molecule, plays an important protective role during airway inflammation. Deficiency of this molecule induces emphysematous changes in murine lungs, but its significance in human COPD remains unclear.Methods
We collected bronchoalveolar lavage fluid from 20 subjects with varying degrees of COPD (8 former smokers and 12 current smokers) and 15 asymptomatic healthy control subjects (5 never smokers, 3 remote former smokers, and 7 current smokers). All subjects underwent a complete medical history and pulmonary function testing. SP-D was measured by Enzyme-Linked ImmunoSorbent Assay. Statistical analysis was performed using nonparametric methods and multivariable linear regression for control of confounding. The effect of corticosteroid treatment on SP-D synthesis was studied in vitro using an established model of isolated type II alveolar epithelial cell culture.Results
Among former smokers, those with COPD had significantly lower SP-D levels than healthy subjects (median 502 and 1067 ng/mL, respectively, p = 0.01). In a multivariable linear regression model controlling for age, sex, race, and pack-years of tobacco, COPD was independently associated with lower SP-D levels (model coefficient -539, p = 0.04) and inhaled corticosteroid use was independently associated with higher SP-D levels (398, p = 0.046). To support the hypothesis that corticosteroids increase SP-D production we used type II alveolar epithelial cells isolated from adult rat lungs. These cells responded to dexamethasone treatment by a significant increase of SP-D mRNA (p = 0.041) and protein (p = 0.037) production after 4 days of culture.Conclusion
Among former smokers, COPD is associated with lower levels of SP-D and inhaled corticosteroid use is associated with higher levels of SP-D in the lung. Dexamethasone induced SP-D mRNA and protein expression in isolated epithelial cells in vitro. Given the importance of this molecule as a modulator of innate immunity and inflammation in the lung, low levels may play a role in the pathogenesis and/or progression of COPD. Further, we speculate that inhaled steroids may induce SP-D expression and that this mechanism may contribute to their beneficial effects in COPD. Larger, prospective studies are warranted to further elucidate the role of surfactant protein D in modulating pulmonary inflammation and COPD pathogenesis. 相似文献9.
Francisco Garcia-Rio Marc Miravitlles Joan B Soriano Luis Muñoz Enric Duran-Tauleria Guadalupe Sánchez Víctor Sobradillo Julio Ancochea 《Respiratory research》2010,11(1):1-15
Background
Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue.Methods
Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay.Results
IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6.Conclusion
AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response. 相似文献10.
Dilyara G. Yanbaeva Emiel F. M. Wouters Mieke A. Dentener Martijn A. Spruit 《Free radical research》2013,47(8):738-743
Cigarette smoking is the main risk factor for developing the inflammatory lung disease chronic obstructive pulmonary disease (COPD). Differences in susceptibility among smokers have been attributed to a genetic predisposition. A recent publication on the Framingham Heart Study found a strong association of the Asn142Asp SNP in Glutatthione-S-transferase Omega (GSTO) 2 with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC). FEV1 is the main parameter reflecting the degree of airflow limitation in patients with COPD. Therefore the present study was undertaken to investigate whether the Asn142Asp polymorphism in GSTO2 occurs more frequently in patients with COPD than healthy subjects and to replicate the finding that it strongly correlates with FEV1. Furthermore, the Ala140Asp substitution in GSTO1 was examined. Genotyping was carried out in 195 healthy controls and 355 patients with COPD. The results demonstrate that the Asn142Asp polymorphism in GSTO2 and the GSTO1140Asp/GSTO2142Asp haplotype were associated with increased risk of COPD. However, single-marker and haplotype-based analyses failed to reveal an association between lung function parameters and investigated non-synonymous coding SNPs in the GSTO genes. In conclusion, GSTO2 is a candidate gene for COPD, but is not associated with FEV1. 相似文献
11.
《Free radical research》2013,47(11):1296-1303
AbstractA total of 267 clinically stable chronic obstructive pulmonary disease (COPD) patients provided complete data about diet and oxidative stress markers in order to assess the relationship between antioxidant rich food groups and nutrients, and serum markers of oxidative stress in COPD. Dietary data of the last 2 years was assessed using a validated food frequency questionnaire (122 items). Levels of carbonyls, nitrotyrosine, malondialdehyde and reduced glutathione (GSH) were measured in serum. Vitamin E intake was inversely associated with levels of carbonyls (p = 0.05) and olive oil was positively associated with GSH levels (p = 0.01), in active smokers. Intake of vegetables was related to a decrease of malondialdehyde levels (p = 0.04) in former smokers. No statistically significant associations were found between remaining dietary antioxidants and serum oxidative stress markers. These results provide new data for a potential dietary modulation of systemic oxidative stress in COPD patients, particularly in those that continue smoking. 相似文献
12.
13.
Moermans C Heinen V Nguyen M Henket M Sele J Manise M Corhay JL Louis R 《Cytokine》2011,56(2):298-304
Background
Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease caused by repeated exposure to noxious gases or particles. It is now recognized that the disease also features systemic inflammation. The purpose of our study was to compare airway and systemic inflammation in COPD to that seen in healthy subjects and to relate the inflammation with the disease severity.Methods
Ninety-five COPD patients, encompassing the whole severity spectrum of the disease, were recruited from our outpatient clinic and rehabilitation center and compared to 33 healthy subjects. Induced sputum and blood samples were obtained for measurement of inflammatory cell count. Interleukin (IL)-4, IL-6, IL-10, TNF-α and IFN-γ produced by 24 h sputum and blood cell cultures were measured.Results
Compared to healthy subjects, COPD exhibited a prominent airway neutrophilic inflammation associated with a marked IL-10, IL-6 and TNF-α release deficiency that contrasted with a raised IFN-γ production. Neutrophilic inflammation was also prominent at blood level together with raised production of IFN-γ, IL-10 and TNF-α. Furthermore, sputum neutrophilia correlated with disease severity assessed by GOLD stages. Likewise the extent of TNF-α release from blood cells also positively correlated with the disease severity but negatively with that of sputum cell culture. Blood release of TNF-α and IL-6 negatively correlated with body mass index. Altogether, our results showed a significant relationship between cellular marker in blood and sputum but poor relationship between local and systemic release of cytokines.Conclusions
COPD is characterized by prominent neutrophilic inflammation and raised IFN-γ production at both bronchial and systemic level. Overproduction of TNF-α at systemic level correlates with disease severity and inversely with body mass index. 相似文献14.
慢性阻塞性肺病稳定期的下呼吸道细菌定植研究 总被引:6,自引:0,他引:6
目的 研究慢性阻塞性肺病(COPD)患者是否存在下呼吸道细菌定植,其对气道炎症的影响以及与急性加重之间的关系。方法 人选诊断明确的COPD稳定期患者,对其痰液及支气管肺泡灌洗液(BALF)进行细菌学定量、定性分析,并用酶联免疫吸附试验(ELISA)对痰液白细胞介素6(IL-6)、IL-8,以及肿瘤坏死因子α(TNF-α)水平检测。结果 46例中、重度COPD患者中,在稳定期和急性加重期,痰标本菌落计数>10~6 CFU/ml分别为32.6%(15/46)和45.65%(21/46),BALF菌落计数>10~3 CFU/ml则分别为44.4%(4/9)和54.5%(6/11),其中流感嗜血杆菌占首位,急性加重期菌落数显著高于稳定期,存在细菌定植的患者痰液中IL-6及TNFα的浓度显著高于无细菌定植的患者,细菌定植和IL-8呈显著正相关(P<0.05)。结论 部分COPD稳定期患者存在细菌定植,细菌定植的患者可能通过菌落数量的增加和促使气道炎症反应而导致急性加重频繁。 相似文献
15.
Daniele A De Rosa A Nigro E Scudiero O Capasso M Masullo M de Laurentiis G Oriani G Sofia M Bianco A 《The international journal of biochemistry & cell biology》2012,44(3):563-569
Adiponectin (Acrp30) shows several beneficial properties and circulates as different oligomers. The role of Acrp30 in lung is not fully clear, but a link with chronic obstructive pulmonary disease (COPD) has been highlighted. In this study, we analyzed the anthropometrical and biochemical features and evaluated total Acrp30 levels of a COPD cohort without metabolic complications compared to healthy controls. In addition, being the oligomerization state critical for its biological activities, we characterized the pattern of Acrp30 circulating oligomers focusing on the high molecular weight (HMW) oligomers to verify whether it correlates to COPD. Finally, we investigated AdipoR1 and AdipoR2 expression in lung from COPD. Interestingly, we found for the first time that the oligomerization state of Acrp30 is altered in COPD; particularly, we observed that the higher levels of Acrp30 are associated with a significant and specific increase of HMW. In addition, we demonstrated the presence of AdipoRs with a lower expression of AdipoR2 compared to AdipoR1. In conclusion, we demonstrated that in COPD, the higher levels of Acrp30 are associated with the significantly increase of HMW representing the most biologically active forms. The important role of Acrp30 in pathophysiological conditions of lung is supported also by the modulation of AdipoRs with the down regulation of AdipoR2. The low expression of AdipoR2 could suggest a specific role of this receptor, mainly implicated in Acrp30 effects on inflammation and oxidative stress. Thus, total Acrp30, HMW and its receptors could be considered critical targets to improve diagnostic and therapeutic strategies for lung diseases. 相似文献
16.
Background
The medico-economic impact of smoking cessation considering a smoking patient with chronic obstructive pulmonary disease (COPD) is poorly documented.Objective
Here, considering a COPD smoking patient, the specific burden of continuous smoking was estimated, as well as the effectiveness and the cost-effectiveness of smoking cessation.Methods
A multi-state Markov model adopting society''s perspective was developed. Simulated cohorts of English COPD patients who are active smokers (all severity stages combined or patients with the same initial severity stage) were compared to identical cohorts of patients who quit smoking at cohort initialization. Life expectancy, quality adjusted life-years (QALY), disease-related costs, and incremental cost-effectiveness ratio (ICER: £/QALY) were estimated, considering smoking cessation programs with various possible scenarios of success rates and costs. Sensitivity analyses included the variation of model key parameters.Principal Findings
At the horizon of a smoking COPD patient''s remaining lifetime, smoking cessation at cohort intitialization, relapses being allowed as observed in practice, would result in gains (mean) of 1.27 life-years and 0.68 QALY, and induce savings of −1824 £/patient in the disease-related costs. The corresponding ICER was −2686 £/QALY. Smoking cessation resulted in 0.72, 0.69, 0.64 and 0.42 QALY respectively gained per mild, moderate, severe, and very severe COPD patient, but was nevertheless cost-effective for mild to severe COPD patients in most scenarios, even when hypothesizing expensive smoking cessation intervention programmes associated with low success rates. Considering a ten-year time horizon, the burden of continuous smoking in English COPD patients was estimated to cost a total of 1657 M£ while 452516 QALY would be simultaneously lost.Conclusions
The study results are a useful support for the setting of smoking cessation programmes specifically targeted to COPD patients. 相似文献17.
18.
Rahman I van Schadewijk AA Hiemstra PS Stolk J van Krieken JH MacNee W de Boer WI 《Free radical biology & medicine》2000,28(6):920-925
Cigarette smoking results in an oxidant/antioxidant imbalance in the lungs and inflammation, which are considered to be key factors in the pathogenesis of chronic obstructive pulmonary disease (COPD). Glutathione (GSH) is an important protective antioxidant in lung epithelial cells and epithelial lining fluid. De novo GSH synthesis in cells occurs by a two-enzyme process. The rate-limiting enzyme is gamma-glutamylcysteine synthetase (gamma-GCS), in which the heavy subunit (HS) constitutes most of its catalytic activity. The localization and expression of gamma-GCS-HS in specific lung cells as well as possible differences in its expression between smokers with and without COPD have not yet been studied. The purpose of this study was to investigate gamma-GCS-HS expression using messenger RNA in situ hybridization in peripheral lung tissue. We studied 23 current or ex-smokers with similar smoking histories with (n = 11; forced expiratory volume in 1 s [FEV(1)] < 75% predicted) or without COPD (n = 12; FEV(1) < 84% predicted). We assessed the relations between pulmonary gamma-GCS-HS expression, FEV(1) and transforming growth factor-beta1 (TGFbeta(1)), because TGFbeta(1) can modulate gamma-GCS-HS expression in lung epithelial cells. Gamma-GCS-HS is predominantly expressed by airway and alveolar epithelial cells, alveolar CD68+ cells (macrophages), and endothelial cells of both arteries and veins. In subjects with COPD, semiquantitative analysis revealed higher levels of gamma-GCS-HS messenger RNA in alveolar epithelium (1.5 times, p <.04) and a trend for a higher expression in bronchiolar epithelium (1.3 times, p =.075) compared with subjects without COPD. We did not observe a significant correlation between airway and alveolar epithelial gamma-GCS-HS expression and TGFbeta(1) expression (r =.20), FEV(1) percentage predicted (r =.18), or FEV(1)/forced vital capacity ratio (r =.14; p.05). Our results show that gamma-GCS-HS is localized, particularly in lung epithelium, and shows higher expression in smokers with COPD. This suggests a specific role for enhanced GSH synthesis as a mechanism to provide an adaptive response against oxidative stress in patients with COPD. 相似文献
19.
Nurhan Gumral Mustafa Nazıroglu Kurtulus Ongel Emine Dasdibi Beydilli Fehmi Ozguner Recep Sutcu Sadettin Calıskan Ahmet Akkaya 《Cell biochemistry and function》2009,27(5):276-283
An imbalance between oxidative stress and antioxidative capacity may play an important role in the development and progression of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD). We carried out a study to assess the systemic oxidant–antioxidant status during the exacerbation and the stable period in patients with BA and COPD. A total of 33 patients, 16 with BA and 17 with COPD were included in the study. During the exacerbation and the stable periods, levels of malondialdehyde (MDA), activities of superoxide dismutase (SOD), glutathione peroxidase (GSH‐Px), glutathione reductase (GRd), and catalase (CAT) in erythrocytes and serum melatonin concentrations were investigated. Blood counts, respiratory functions, and blood gases of the patients were also performed. During an exacerbation period of BA, despite the decreases in GSH‐Px, GRd and melatonin levels, MDA and CAT levels, and the white blood cell count, the percentage of eosinophils were significantly higher than in the stable period. Also, it was found that FEV1/L (where FEV1 is the forced expiratory volume in 1 s), FVC/L (where FVC is forced vital capacity), PEF/L/s (where PEF is peak expiratory flow), pO2 (where pO2 is oxygen pressure) levels increased during the stable period in patients with BA. MDA and SOD values were higher in the exacerbation period than in the stable period although GSH‐Px, GRd, melatonin, pH, and pO2 values were lower in the exacerbation period than in the stable period. The blood counts and the respiratory function tests did not change between the exacerbation and the stable period of patients with COPD significantly. In conclusion, we observed that oxidative stress in the exacerbation period of patients with BA and COPD increased whereas the antioxidant enzymes and melatonin values reduced. The episodes of BA or COPD might be associated with elevated levels of oxidative stress. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Amir Soltani David W Reid Sukhwinder S Sohal Richard Wood-Baker Steve Weston H Konrad Muller E Haydn Walters 《Respiratory research》2010,11(1):105