首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Certain species of terrestrial chironomids (Diptera) are specialised on open patches in initial stages of primary or secondary succession (early fallow, lichens and mosses on rocks, etc.). These "source" habitats provide good quality food for their larvae and most offspring are produced here, but they are sensitive to summer desiccation. This often results in extinction of the summer larval population, followed in winter by re-colonisation from less suitable, but more stable "sink" habitats in the surrounding landscape. Soil dwelling and long-lived larvae are poor migrants; short-lived, winged adult females select patches for their development. Proper choice of oviposition sites and consequent distribution of eggs among individual habitats is thus critical for the success of these species. A mathematical model was developed in order to find out whether this re-colonisation strategy could ensure population persistence at the landscape level. The model was verified using long-term data on Smittia atterima abundance in old fields. The results indicate that even a small proportion of eggs laid in a sink habitat can ensure a successful re-colonisation of the source habitat. Thus, re-colonisation of source habitats from sink habitats is concluded to be one of the reasons for persistence of the latter. The model indicates that this re-colonisation may ensure population persistence even in conditions when exclusive use of only one habitat leads to population extinction either due to environmental stress or to a negative growth rate.  相似文献   

2.
Kenneth A. Schmidt 《Oikos》2017,126(5):651-659
The combination of spatial structure and non‐linear population dynamics can promote the persistence of coupled populations, even when the average population growth rate of the patches seen in isolation would predict otherwise. This phenomenon has generally been conceptualized and investigated through the movement of individuals among patches that each holds many individuals, as in metapopulation models. However, population persistence can likewise increase as the result of individuals moving among sites (e.g. breeding territories) within in a single patch. Here I examine the latter: individuals making small‐scale informed decisions with respect to where to breed can promote population persistence in poor environments. Based on a simple algebraic model, I demonstrate information thresholds, and predict that greater information use is required for population persistence under lower spatial heterogeneity in habitat quality, all else equal. Second, I implement an individual‐based model to explore prior experience and prospecting on conspecific success within a more complex, and spatially heterogeneous environment. Uniquely, I jointly examine the effects of simulated habitat loss, spatial heterogeneity prior to habitat, and variation in information gathering on population persistence. I find that habitat loss accelerates population quasi‐extinction risk; however, information use reduces extinction probabilities in proportion to the level of information gathering. Per capita reproductive success declines with number of breeding sites, suggesting that information‐mediated Allee effects may contribute to extinction risk. In conclusion, my study suggests that populations in a changing world may be increasingly vulnerable to extinction where patch size and spatial heterogeneity constrain the effectiveness of information‐use strategies.  相似文献   

3.
《Ecological Complexity》2005,2(4):395-409
A model of the dynamics of natural rotifer populations is described as a discrete non-linear map depending on three parameters, which reflect characteristics of the population and environment. Model dynamics and their change by variation of these parameters were investigated by methods of bifurcation theory. A phase-parametric portrait of the model was constructed and domains of population persistence (stable equilibrium, periodic and a-periodic oscillations of population size) as well as population extinction were identified and investigated. The criteria for population persistence and approaches to determining critical parameter values are described. The results identify parameter values that lead to population extinction under various environmental conditions. They further illustrate that the likelihood of extinction can be substantially increased by small changes in environmental quality, which shifts populations into new dynamical regimes.  相似文献   

4.
Habitat subdivision causes changes in food web structure   总被引:1,自引:1,他引:0  
Theory suggests that the response of communities to habitat subdivision depends on both species' characteristics and the extent to which species interact. For species with dynamics that are independent of other species, subdivision is expected to promote regional extinction as populations become small and isolated. By contrast, intermediate levels of subdivision can facilitate persistence of strongly interacting species. Consistent with this prediction, experimental subdivision lengthened persistence of some species, altering the extent of food web collapse through extinction. Extended persistence was associated with immigration rescuing a basal prey species from local extinction. As predicted by food web theory, habitat subdivision reduced population density of a top predator. Removal of this top predator from undivided microcosms increased the abundance of two other predator species, and these changes paralleled those produced by habitat subdivision. These results show that species interactions structured this community, and illustrate the need for investigations of other communities.  相似文献   

5.
二维Lotka-Volterra竞争系统的β持续生存与β绝灭   总被引:2,自引:0,他引:2  
利用极限理论与延拓方法研究了二维Lotka-Volterra竞争务统在有限时间内的持续生存与绝灭问题,即β持续生存与β绝灭问题.给出了种群β持续生存与β绝灭的一些充分条件.所得结论表明:种群的β持续生存和β绝灭与种群的初始数量有关.在一定条件下,只要控制种群的初始数量在一定范围内,即可保证两种群永远β持续生存.  相似文献   

6.
Understanding population extinctions is a chief goal of ecological theory. While stochastic theories of population growth are commonly used to forecast extinction, models used for prediction have not been adequately tested with experimental data. In a previously published experiment, variation in available food was experimentally manipulated in 281 laboratory populations of Daphnia magna to test hypothesized effects of environmental variation on population persistence. Here, half of those data were used to select and fit a stochastic model of population growth to predict extinctions of populations in the other half. When density-dependent demographic stochasticity was detected and incorporated in simple stochastic models, rates of population extinction were accurately predicted or only slightly biased. However, when density-dependent demographic stochasticity was not accounted for, as is usual when forecasting extinction of threatened and endangered species, predicted extinction rates were severely biased. Thus, an experimental demonstration shows that reliable estimates of extinction risk may be obtained for populations in variable environments if high-quality data are available for model selection and if density-dependent demographic stochasticity is accounted for. These results suggest that further consideration of density-dependent demographic stochasticity is required if predicted extinction rates are to be relied upon for conservation planning.  相似文献   

7.
污染环境下单种群模型生存阈值   总被引:1,自引:0,他引:1  
本论文研究了污染环境下毒素对单种群生存的影响。在环境容纳量较小的假设下建立了生物种群模型,在该模型中不但考虑了环境毒素浓度对生物个体生存的影响,还考虑了生物个体从食物链中吸收的毒素对其影响。通过研究得到种群一致持续生存和若平均持续生存的充分条件,同时得到种群持续生存依赖于模型参数和生物个体体内毒素净化率的某些充分条件.  相似文献   

8.
We studied the effects of food resources on weaning success, overwinter survival, and social group density in golden marmots ( Marmota caudata aurea ), an Old World sciurid rodent. End-of-season standing crop, a measure of seasonal productivity, varied between marmot groups but seemed repeatable between years. We adjusted some of our measurements of potential food availability by marmot preferences because faecal analysis suggested that marmots foraged selectively. Some, but not all, measured fitness parameters were associated with variation in food availability. The probability of weaning young was associated with overall food availability the previous year, and there was a significant positive relationship between the early-season food resources and the proportion of years in which a group reproduced. Weaning date, a correlate of subsequent juvenile overwinter survival, was associated with overall food availability in the same year. Non-juvenile overwinter survival was weakly associated with food availability. Finally, marmot density was not associated with the availability of food resources. We suggest that obligate social behaviour may limit the degree to which demographic factors can track environmental variation.  相似文献   

9.
Masting, the synchronized and intermittent seed production by plant populations, provides highly variable food resources for specialist seed predators. Such a reproductive mode helps minimize seed losses through predator satiation and extinction of seed predator populations. The seed predators can buffer the resource variation through dispersal or extended diapause. We developed a spatially explicit resource-consumer model to understand the effect of masting on specialist seed predators. The masting dynamics were assumed to follow a resource-based model for plant reproduction, and the population dynamics of the predator were represented by a spatially extended Nicholson-Bailey model. The resultant model demonstrated that when host plants reproduce intermittently, seed predator populations go locally extinct, but global persistence of the predator is facilitated by dispersal or extended diapause. Global extinction of the predator resulted when the intermittent reproduction is highly synchronized among plants. An approximate invasion criterion for the predators showed that negative lag-1 autocorrelation in seeding reduces invasibility, and positive lag-1 cross-correlation enhances invasibility. Spatial synchronization in seeding at local scale caused by pollen coupling (or climate forcing) further prevented invasion of the predators. If the predators employed extended diapause, extremely high temporal variability in reproduction was required for plants to evade the predators.  相似文献   

10.
Persistence in population models with demographic fluctuations   总被引:7,自引:0,他引:7  
A persistence and extinction theory is developed through analytical studies of deterministic population models. Under hypotheses that require demographic parameters to fluctuate temporally, the populations may or may not oscillaate. Extinction, when it occurs, is asymptotic. An hierarchy of persistence criteria, based upon fluctuations measured by time average means, is derived. In some situations a threshold value is found to separate persistent population models from those that tend to extinction. Application of the persistence-extinction theory is to the problem of assessing effects of a toxic substance on a population when toxicant inputs to the environment and to resources are oscillatory.  相似文献   

11.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

12.
Extinction is ubiquitous in natural systems and the ultimate fate of all biological populations. However, the factors that contribute to population extinction are still poorly understood, particularly genetic diversity and composition. A laboratory experiment was conducted to examine the influences of environmental variation and genotype diversity on persistence in experimental Daphnia magna populations. Populations were initiated in two blocks with one, two, three, or six randomly selected and equally represented genotypes, fed and checked for extinction daily, and censused twice weekly over a period of 170 days. Our results show no evidence for an effect of the number of genotypes in a population on extinction hazard. Environmental variation had a strong effect on hazards in both experimental blocks, but the direction of the effect differed between blocks. In the first block, variable environments hastened extinction, while in the second block, hazards were reduced under variable food input. This occurred despite greater fluctuations in population size in variable environments in the second block of our experiment. Our results conflict with previous studies, where environmental variation consistently increased extinction risk. They are also at odds with previous studies in other systems that documented significant effects of genetic diversity on population persistence. We speculate that the lack of sexual reproduction, or the phenotypic similarity among our experimental lines, might underlie the lack of a significant effect of genotype diversity in our study.  相似文献   

13.
Viability in a pink environment: why "white noise" models can be dangerous   总被引:1,自引:0,他引:1  
Morales 《Ecology letters》1999,2(4):228-232
Analysis of long time series suggests that environmental fluctuations may be accurately represented by 1/ f   noise (pink noise), where temporal correlation is found at several scales, and the range of fluctuations increases over time. Previous studies on the effects of coloured noise on population dynamics used first or second order autoregressive noise. I examined the importance of coloured noise for extinction risk using true 1/ f   noise. I also considered the problem of estimating extinction risk with a limited sample of environmental variation. Pink noise environments increased extinction risk in random walk models where environmental variation affected the growth rate. However, pink noise environments decreased extinction risk in the Ricker model where environmental variation modified the carrying capacity. Underestimation of environmental variance almost always yielded underestimation of extinction risk. For either population viability analysis or management, we should carefully consider the long-term behaviour of the environment as well as how we include environmental noise in population models.  相似文献   

14.
Demographic stochasticity (due to the probabilistic nature of the birth–death process) and demographic heterogeneity (between-individual differences in demographic parameters) have long been seen as factors affecting extinction risk. While demographic stochasticity can be independent of underlying species traits, demographic heterogeneity may strongly depend on phenotypic variation. However, how phenotypic variation can affect extinction risk is largely unknown. Here, I develop a stochastic metapopulation model that takes into account the effects of demographic stochasticity and phenotypic variation in the traits controlling colonization rates to assess what the effect of phenotypic variation may be on the persistence of the metapopulation. Although phenotypic variation can lead to a decrease in metapopulation persistence under some conditions, it also may lead to an increase in persistence whenever phenotypic mismatch—or the distance between the optimal trait value and the population mean—is large. This mismatch can in turn arise from a variety of ecological and evolutionary reasons, including weak selection or a recent history of invasion. Last, the effect of phenotypic variation has a deterministic component on colonization rates, and a stochastic component on persistence through colonization rates, but both are important to understand the overall effect. These results have important implications for the conservation of threatened species and management practices that may historically have overlooked phenotypic variation as unimportant noise around mean values of interest.  相似文献   

15.
Prolonged clonal growth: escape route or route to extinction?   总被引:11,自引:0,他引:11  
Many plant species have the capability to reproduce sexually as well as clonally. The balance between clonal reproduction and sexual reproduction varies between different species. It was estimated that 66.5% of all central European flora may form independent but genetically identical daughter plants. Also within species there is great variation in the ratio clonal/sexual reproduction. Clonal reproduction can be considered as an alternative life cycle loop that allows persistence of a species in the absence of the ability to complete the normal life cycle (i.e. seed production, germination and recruitment). Plant populations exhibiting prolonged clonal growth have been referred to as 'remnant populations'. A remnant population in general is defined as "a population capable of persistence during extended time periods despite a negative population growth rate (λ<1) due to longlived life stages and life cycles, including loops, that allow population persistence without completion of the whole life cycle". Here we argue that prolonged and nearly exclusive clonal growth through environmental suppression of sexual reproduction can ultimately lead to local sexual extinction and to monoclonal populations of a species, and that this may imply significant consequences for population viability. Especially obligate or mainly outcrossing clonal plant species may be vulnerable for sexual extinction. We argue that the consequences of reduced sexual recruitment in clonally propagating plants may be understudied and underestimated and that a re-evaluation of current ideas on clonality may be necessary.  相似文献   

16.
Kim Cuddington  Alan Hastings 《Oikos》2016,125(7):1027-1034
Environmental parameters such as temperature and rainfall have a positively autocorrelated variance structure which makes it likely that runs of good or bad conditions will occur. It has previously been demonstrated that such autocorrelated environmental variance can increase the probability of extinction in small populations, in much the same way that increased variance without autocorrelation can increase extinction risk. As a result, it has also been suggested that positive autocorrelation will decrease the probability that a species will establish in a novel location. We suggest that describing the probability of invasion success as the probability of indefinite persistence may be an inappropriate definition of risk. Economic or ecological damage may be associated with a population that initially reaches high densities before going extinct in the new location. In addition, such populations may spread to new locations before extirpation. We use a modeling approach to examine the effect of positively autocorrelated conditions on the probability that small populations will reach large size before extinction. We find that where variance is high and the geometric mean of the population growth rate is low, autocorrelation increases the risk that a population will pass a an upper threshold density, even when extinction probability is unaffected. Therefore species classified as having low probability of invasion risk on the basis of population growth rates measured in low variance environments may actually have quite a substantial probability of establishing a large population for a period of time. The mechanism behind the effect is the disproportionate influence of short runs of good conditions initially following introduction.  相似文献   

17.
Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor‐analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual‐based demography from yellow‐bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive‐status change to declining environmental quality result in a higher risk of population quasi‐extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.  相似文献   

18.
Traditional conservation biology regards environmental fluctuations as detrimental to persistence, reducing long-term average growth rates and increasing the probability of extinction. By contrast, coexistence models from community ecology suggest that for species with dormancy, environmental fluctuations may be essential for persistence in competitive communities. We used models based on California grasslands to examine the influence of interannual fluctuations in the environment on the persistence of rare forbs competing with exotic grasses. Despite grasses and forbs independently possessing high fecundity in the same types of years, interspecific differences in germination biology and dormancy caused the rare forb to benefit from variation in the environment. Owing to the buildup of grass competitors, consecutive favorable years proved highly detrimental to forb persistence. Consequently, negative temporal autocorrelation, a low probability of a favorable year, and high variation in year quality all benefited the forb. In addition, the litter produced by grasses in a previously favorable year benefited forb persistence by inhibiting its germination into highly competitive grass environments. We conclude that contrary to conventional predictions of conservation and population biology, yearly fluctuations in climate may be essential for the persistence of rare species in invaded habitats.  相似文献   

19.
Dispersal limitation and long-term persistence are known to delay plant species’ responses to habitat fragmentation, but it is still unclear to what extent landscape history may explain the distribution of dispersal traits in present-day plant communities. We used quantitative data on long-distance seed dispersal potential by wind and grazing cattle (epi- and endozoochory), and on persistence (adult plant longevity and seed bank persistence) to quantify the linkages between dispersal and persistence traits in grassland plant communities and current and past landscape configurations. The long-distance dispersal potential of present-day communities was positively associated with the amounts of grassland in the historical (1835, 1938) landscape, and with a long continuity of grazing management—but was not associated with the properties of the current landscape. The study emphasises the role of history as a determinant of the dispersal potential of present-day grassland plant communities. The importance of long-distance dispersal processes has declined in the increasingly fragmented modern landscape, and long-term persistent species are expected to play a more dominant role in grassland communities in the future. However, even within highly fragmented landscapes, long-distance dispersed species may persist locally—delaying the repayment of the extinction debt.  相似文献   

20.
Minimum viable population sizes and global extinction risk are unrelated   总被引:1,自引:0,他引:1  
Theoretical and empirical work has shown that once reduced in size and geographical range, species face a considerably elevated risk of extinction. We predict minimum viable population sizes (MVP) for 1198 species based on long-term time-series data and model-averaged population dynamics simulations. The median MVP estimate was 1377 individuals (90% probability of persistence over 100 years) but the overall distribution was wide and strongly positively skewed. Factors commonly cited as correlating with extinction risk failed to predict MVP but were able to predict successfully the probability of World Conservation Union Listing. MVPs were most strongly related to local environmental variation rather than a species' intrinsic ecological and life history attributes. Further, the large variation in MVP across species is unrelated to (or at least dwarfed by) the anthropogenic threats that drive the global biodiversity crisis by causing once-abundant species to decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号