首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of endogenous LIM kinase 1 (LIMK1) protein was investigated in embryonic and adult mice using a rat monoclonal antibody (mAb), which recognizes specifically the PDZ domain of LIMK1 and not LIMK2. Immunoblotting analysis revealed widespread expression of LIMK1 existing as a 70-kDa protein in tissues and in cell lines, with a higher mass form (approximately 75 kDa) present in some tissues and cell lines. Smaller isoforms of approximately 50 kDa were also occasionally evident. Immunofluorescence analysis demonstrated LIMK1 subcellular localization at focal adhesions in fibroblasts as revealed by co-staining with actin, paxillin and vinculin in addition to perinuclear (Golgi) and occasional nuclear localization. Furthermore, an association between LIMK1 and paxillin but not vinculin was identified by co-immunoprecipitation analysis. LIMK1 is enriched in both axonal and dendritic growth cones of E18 rat hippocampal pyramidal neurons where it is found in punctae that extend far out into filopodia, as well as in a perinuclear region identified as Golgi. In situ, we identify LIMK1 protein expression in all embryonic and adult tissues examined, albeit at different levels and in different cell populations. The rat monoclonal LIMK1 antibody recognizes proteins of similar size in cell and tissue extracts from numerous species. Thus, LIMK1 is a widely expressed protein that exists as several isoforms.  相似文献   

2.
The expression of the hepatocyte Na(+)-dependent bile acid transport protein during liver development and in hepatoma cells has been characterized using a monoclonal antibody (mAb 25D-1) which specifically recognizes this 49-kDa carrier system. mAb binding studies demonstrated a greatly reduced concentration of this transport protein on the surface of hepatoma tissue culture (HTC) cells, a result consistent with the greater than 95% reduction in bile acid transport capacity when compared with normal adult hepatocytes. Immunoprecipitation procedures with 25D-1 were utilized to quantitate the presence of this transport protein in HTC cells as well as in adult hepatocytes that had been labeled with [35S]methionine or Na125I. These studies indicate that the 49-kDa transport protein is not expressed either on the surface or in any intracellular compartment in HTC cells. mAb binding to fetal cells (day 17) also indicated a greatly decreased number of transport molecules in the plasma membrane. Total cell content of this carrier protein during the next 7 weeks of liver development, as measured by immunoprecipitation, increased in a linear fashion reaching 92% of the adult level at 4 weeks after birth, which parallels the increase in transport function. These results demonstrate that bile acid transport capacity is directly related to the level of expression of this 49-kDa membrane protein.  相似文献   

3.
LRIG1 protein in human cells and tissues   总被引:6,自引:0,他引:6  
We have recently cloned the human LRIG1 gene (formerly LIG1). LRIG1 is a predicted integral cell-surface protein showing similarities to Kekkon-1, the Drosophila melanogaster epidermal growth-factor-receptor antagonist. A specific peptide antibody, LRIG1-151, was raised in rabbits and used to study the LRIG1 protein. LRIG1 migrated in denaturing polyacrylamide gel electrophoresis under reducing conditions as two species with apparent molecular weights of 143 kDa and 134 kDa, and as two fragments corresponding to an N-terminal 111-kDa species and a C-terminal 32-kDa species. Under non-reducing conditions, both apparent monomers and apparent higher molecular weight complexes were evident. Immunoblotting analysis of cell-surface-biotinylated lysates and confocal microscopy revealed that LRIG1 was localized to the cell surface in ZR-75 cells expressing endogenous LRIG1 and in COS-7 cells expressing a synthetic LRIG1-GFP fusion protein. Immunohistochemical analysis of normal human tissues showed staining for LRIG1 in epithelia in various organs, scattered neurons, and muscles. Immunoblotting demonstrated LRIG1 protein in tissue lysates from normal human prostate, mammary epithelial cells, ileum, stomach, lung, and cerebral cortex. These results demonstrate that LRIG1 is an integral cell-surface membrane protein that is expressed by specific cells in various human tissues and that its 143-kDa form might be cleaved into 111-kDa and 32-kDa fragments.  相似文献   

4.
5.
Caveolin--an integral membrane protein--is the principal component of caveolae membranes in vivo. Multiple forms of caveolin have been identified: caveolin-1alpha, caveolin-1beta, caveolin-2 and caveolin-3. They differ in their specific properties and tissue distribution. When we studied the lysate of resident and elicited macrophages isolated from rat peritoneal cavity by Western blot analysis, we identified two different proteins (approximately 29 kDa and approximately 20 kDa) which were labelled with anti-caveolin antibodies. The approximately 20-kDa protein was labelled specifically only by anti-VIP21/caveolin-1, while the approximately 29-kDa protein was labelled by anti-VIP21/caveolin-1 and anti-caveolin-2. The presence of the approximately 29-kDa protein was characteristic of resident macrophages, and only a small amount of the approximately 20-kDa protein was detected in these cells. Elicitation resulted in a significant increase in the amount of the approximately 20-kDa protein labelled by anti-VIP21/caveolin-1 only. According to its molecular mass and antibody-specificity, this protein might be identical with the caveolin-1beta isoform. Our morphological (confocal and electron microscopical) studies have shown that in resident cells caveolin was present in the cytoplasm, in smaller vesicles and multivesicular bodies around the Golgi area. Only a very small amount of caveolae was found on the surface of these cells. In elicited macrophages, caveolae (labelled with the anti-VIP21/caveolin-1 antibody) appeared in large numbers on the cell surface, but caveolin detected by anti-caveolin-2 was also found in small vesicles and multivesicular bodies in the cytoplasm. According to these results, the absence of caveolae in resident cells can be explained by the absence of caveolin-1. The expression of the approximately 29-kDa (caveolin-related) protein in resident macrophages seems to be insufficient for caveolae formation. Elicitation significantly increased the expression of caveolin-1, and the increased amount of caveolin-1 resulted in caveolae formation on the cell surface.  相似文献   

6.
MyoD and myogenin protein expression in skeletal muscles of senile rats   总被引:4,自引:0,他引:4  
We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin approximately 3.2, approximately 4.0, and approximately 5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (approximately 43-45 kDa) and a double (or triple) MyoD-like band (approximately 55-65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was approximately 3.4, approximately 4.7, approximately 9.1, and approximately 11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.  相似文献   

7.
An approximately 64-kDa cytoplasmic protein is rapidly phosphorylated in tyrosine in the response of macrophages to colony stimulating factor-1. To identify this protein, BAC1.2F5 macrophages were incubated with or without colony stimulating factor-1, the phosphotyrosine-containing portion of their cytosolic fractions subjected to size exclusion chromatography, and the 45-70-kDa fraction further fractionated by reverse phase high pressure liquid chromatography (RP-HPLC). Tryptic peptides of pooled RP-HPLC fractions from stimulated cells (containing the approximately 64-kDa protein and an approximately 54-kDa protein) and from unstimulated cells (containing the approximately 54-kDa protein alone), were sequenced directly. All seven readable sequences of 8 sequenceable peptides present uniquely in the stimulated fraction were present in the sequence of the src homology 2 domain-containing protein tyrosine phosphatase-1C (PTP-1C). The identity of the approximately 64-kDa protein was confirmed by Western blotting with an antibody raised to a PTP-1C peptide. The rapid, growth factor-induced tyrosine phosphorylation of PTP-1C suggests that it may be involved in very early events in growth factor signal transduction.  相似文献   

8.
A 35-kDa protein (designated p35) showing antigenic homology with an N-terminal epitope on the SV-40 large T-antigen oncoprotein was purified from transformed cardiomyocytes. Sequence analysis of several tryptic peptides indicated that p35 was not homologous to previously described sequences. Polyclonal antibody raised against synthetic peptide containing one of the tryptic fragments was used in Western blot analyses to ascertain the tissue-specific pattern of p35 expression. p35 was expressed ubiquitously in adult mouse tissues, and was detected in both embryonic and transformed cardiomyocyte preparations. Subcellular fractionation studies indicated that p35 is an integral membrane protein. Expression of p35 appeared to be regulated by growth conditions as evidenced by a transient decrease in protein levels following the addition of serum to quiescent NIH 3T3 cells.  相似文献   

9.
10.
Obesity is nowadays related to other pathological conditions such as inflammation, insulin resistance, and diabetes, but little is known about the relationship between psychological stress and adipocytes. We decided to study the expression of the translocator protein (TSPO) 18-kDa, peroxisome proliferator-activated receptor-γ (PPAR-γ), mitochondrial uncoupling protein-1 (UCP-1), and adipocyte morphology in the adipose tissue of rats subjected to stress conditions. In our model of stress, rats fasted for 24 h were placed in a restraint cage and then immersed vertically to the level of the xiphoid process in a water bath at 23 °C for 7 h. After that period, we removed the epididymal adipose tissues for the subsequent analysis. The optical and electron microscopy revealed that adipocytes of control rats formed a continuous epithelial-like cell layer; on the contrary in the adipocytes of stressed rats some cells have merged together and the number of vessels formed seems to increase. Stressed adipocytes presented unilocular cells with numerous mitochondria with a morphology ranging between that of brown adipose tissue (BAT) and white adipose tissue (WAT). Interestingly, when we investigated the subcellular distribution of UCP-1 by immunogold electron microscopy, the adipose tissue of stressed rats was positive for UCP-1. From the immunoblot analysis with anti-PPAR-γ antibody, we observed an increased expression of PPAR-γ in the adipocytes of stressed group compared with control group (P < 0.05). Stress induced the expression of TSPO 18-kDa receptor (B(max) = 106.45 ± 5.87 fmol/mg proteins), which is undetectable by saturation-binding assay with [(3)H]PK 11195 in the control group.  相似文献   

11.
Monoclonal antibodies (McAb) against myosin from the pectoralis muscle of the adult chicken have been generated and shown to react specifically with the myosin heavy chain (MHC). The reactivities of two such McAbs with myosin from adult chicken atrial and ventricular myocardium were further analysed by immunoautoradiography, radioimmunoassay, and immunofluorescence microscopy. Monoclonal antibody MF 20 was found to bind both atrial and ventricular MHC and stain all striated muscle cells of the adult chicken heart. In contrast, McAb B1 bound specifically to atrial myocytes in immunofluorescence studies, while immunoautoradiography and radioimmunoassay demonstrated the specificity of this antibody for the atrial MHC. Upon reacting these McAbs with myosin isolated from embryonic hearts where definitive atria and ventricles were present, the same specificity of antibody binding was observed. Immunofluorescence studies demonstrated that all striated muscle cells of the embryonic heart contained MHCs recognized by MF 20, while only atrial muscle cells were bound by B1. When extracts of presumptive atrial and ventricular tissue were reacted with MF 20 and B1, significant reactivity of MF 20 was first observed at stage 10 in the presumptive ventricle and thereafter this McAb reacted with all regions of the developing myocardium. Binding of B1 was detected approximately 1 day later at stage 15 and was confined to atrial-forming tissues. These data demonstrate antigenic similarity between adult and embryonic MHC isolated from atrial myocardium and suggest the expression of an atrial-specific MHC early in the regional differentiation of the heart.  相似文献   

12.
Previously, we characterized localization of Na(+)-glucose cotransporter SGLT1 (Slc5a1) in the rat kidney using a polyclonal antibody against the synthetic COOH-terminal peptide of the rat protein (Saboli? I, Skarica M, Gorboulev V, Ljubojevi? M, Balen D, Herak-Kramberger CM, Koepsell H. Am J Physiol Renal Physiol 290: 913-926, 2006). However, the antibody gave some false-positive reactions in immunochemical studies. Using a shortened peptide for immunization, we have presently generated an improved, more specific anti-rat SGLT1 antibody (rSGLT1-ab), which in immunochemical studies with isolated membranes and tissue cryosections from male (M) and female (F) rats exhibited 1) in kidneys and small intestine, labeling of a major protein band of approximately 75 kDa; 2) in kidneys of adult animals, localization of rSGLT1 to the proximal tubule (PT) brush-border membrane (S1 < S2 < S3) and intracellular organelles (S1 > S2 > S3), with zonal (cortex < outer stripe) and sex differences (M < F) in the protein expression, which correlated well with the tissue expression of its mRNA in RT-PCR studies; 3) in kidneys of castrated adult M rats, upregulation of the protein expression; 4) in kidneys of prepubertal rats, weak and sex-independent labeling of the 75-kDa protein band and immunostaining intensity; 5) in small intestine, sex-independent regional differences in protein abundance (jejunum > duodenum = ileum); and 6) thus far unrecognized localization of the transporter in cortical thick ascending limbs of Henle and macula densa in kidney, bile ducts in liver, enteroendocrine cells and myenteric plexus in the small intestine, and initial ducts in the submandibular gland. Our improved rSGLT1-ab may be used to identify novel sites of SGLT1 localization and thus unravel additional physiological functions of this transporter in rat organs.  相似文献   

13.
FKBP65 (65-kDa FK506-binding protein) is a member of the highly conserved family of intracellular receptors called immunophilins. All have the property of peptidyl-prolyl cis-trans isomerization, and most have been implicated in folding and trafficking events. In an earlier study, we identified that FKBP65 associates with the extracellular matrix protein tropoelastin during its transport through the cell. In the present study, we have carried out a detailed investigation of the subcellular localization of FKBP65 and its relationship to tropoelastin. Using subcellular fractionation, Triton X-114 phase separation, protease protection assays, and immunofluorescence microscopy (IF), we have identified that FKBP65 is contained within the lumen of the endoplasmic reticulum (ER). Subsequent IF studies colocalized FKBP65 with tropoelastin and showed that the two proteins dissociate before reaching the Golgi apparatus. Immunohistochemical localization of FKBP65 in developing lung showed strong staining of vascular and airway smooth muscle cells. Similar areas stained positive for the presence of elastic fibers in the extracellular matrix. The expression of FKBP65 was investigated during development as tropoelastin is not expressed in adult tissues. Tissue-specific expression of FKBP65 was observed in 12-d old mouse tissues; however, the pattern of expression of FKBP65 was not restricted to those tissues expressing tropoelastin. This suggests that additional ligands for FKBP65 likely exist within the ER. Remarkably, in the adult tissues examined, FKBP65 expression was absent or barely detectable. Taken together, these results support an ER-localized FKBP65-tropoelastin interaction that occurs specifically during growth and development of tissues.  相似文献   

14.
The major water-soluble polypeptide with molecular weight of approximately 23 kDa (the 23-kDa polypeptide) was identified in the lens of common frog Rana temporaria L. According to the gel filtration data, the peptide is a part of an oligomeric protein with molecular weight of more than 300 kDa (alpha-crystallin fraction). A highly pure fraction of the 23-kDa polypeptide was isolated by two-step ion-exchange chromatography and SDS electrophoresis and the specific antibodies were obtained. Immunohistochemistry showed the presence of the 23-kDa polypeptide in the cytoplasm of lens epithelial cells (including its central region) and in the zones neighbouring the plasma membranes in cortical fibers. The 23-kDa polypeptide was not found in the lens central zone (nucleus). It was also present in the retina (in the cells of inner nuclear layers), but not in the other tissues and organs of adult frog. Immunochemical analysis showed that the 23-kDa polypeptide was different from all known crystallins of frogs and other animals (bull, mouse, rat, and chicken). The nature of the 23-kDa polypeptide and the relation of its expression with lens cell differentiation are discussed.  相似文献   

15.
16.
Association of the organization of microtubules (MTs) in the perinuclear region with a 49-kDa protein, that is immunologically cross-reactive to a 51-kDa protein isolated from sea urchin centrosomes and has been shown to play some roles in the organization of MTs in animal cells (Toriyama et al.: Cell Motil. Cytoskeleton 9, 117–128, 1988), was examined during the cell cycle transition from M phase to G1 phase using the highly synchronized tobacco BY-2 cells under confocal laser scanning microscopy (CLSM). After double staining with an antibody against the 51-kDa protein and with an antibody against tubulin, it was revealed that the 49-kDa protein was closely associated with the organization of MTs on the perinuclear regions during this stage under the CLSM. Notably, microfilaments (MFs) were not associated with the organization of MTs in the perinuclear region. This observation suggests that the 49-kDa protein plays a specific role in the organization of MTs on the perinuclear regions during the cell cycle transition from M phase to G1 phase. To understand the molecular characteristics of the 49-kDa protein further, the search for cDNA encoding the 49-kDa protein was conducted in a cDNA expression library prepared from rapidly growing tobacco BY-2 cells using monoclonal antibodies against the 51-kDa protein. Determination of the base sequence of the isolated clone revealed that it encodes protein synthesis elongation factor (EF)-1α. Thus the significance of the involvement of the 49-kDa protein as EF-1α in the organization of MTs on the perinuclear regions is discussed in relation to other cellular functions.  相似文献   

17.
18.
LIM kinase 2 is widely expressed in all tissues.   总被引:7,自引:0,他引:7  
The LIM kinase family includes two proteins: LIMK1 and LIMK2. These proteins have identical genomic structure and overall amino acid identity of 50%. Both proteins regulate actin polymerization via phosphorylation and inactivation of the actin depolymerizing factors ADF/cofilin. Although the function of endogenous LIMK1 is well established, little is known about the function of the endogenous LIMK2 protein. To understand the specific role of endogenous LIMK2 protein, we examined its expression in embryonic and adult mice using a rat monoclonal antibody, which recognizes specifically the PDZ domain of LIMK2 but not that of LIMK1. Immunoblotting and immunoprecipitation analyses of mouse tissues and human and mouse cell lines revealed widespread expression of the 75-kDa LIMK2 protein. Immunofluorescence analysis demonstrated that the cellular localization of LIMK2 is different from that of LIMK1. LIMK2 protein is found in the cytoplasm localized to punctae and is not enriched within focal adhesions like LIMK1. Immunohistochemical studies revealed that LIMK2 is widely expressed in embryonic and adult mouse tissues and that its expression pattern is similar to that of LIMK1 except in the testes. We have also demonstrated that endogenous LIMK1 and LIMK2 form heterodimers, and that LIMK2 does not always interact with the same proteins as LIMK1.  相似文献   

19.
The purpose of this study was to characterize myosin light chain kinase (MLCK) expression in cardiac and skeletal muscle. The only classic MLCK detected in cardiac tissue, purified cardiac myocytes, and in a cardiac myocyte cell line (AT1) was identical to the 130-kDa smooth muscle MLCK (smMLCK). A complex pattern of MLCK expression was observed during differentiation of skeletal muscle in which the 220-kDa-long or "nonmuscle" form of MLCK is expressed in undifferentiated myoblasts. Subsequently, during myoblast differentiation, expression of the 220-kDa MLCK declines and expression of this form is replaced by the 130-kDa smMLCK and a skeletal muscle-specific isoform, skMLCK in adult skeletal muscle. These results demonstrate that the skMLCK is the only tissue-specific MLCK, being expressed in adult skeletal muscle but not in cardiac, smooth, or nonmuscle tissues. In contrast, the 130-kDa smMLCK is ubiquitous in all adult tissues, including skeletal and cardiac muscle, demonstrating that, although the 130-kDa smMLCK is expressed at highest levels in smooth muscle tissues, it is not a smooth muscle-specific protein.  相似文献   

20.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号