首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical activity of the left and right sensorimotor cortex and left and right dorsal hippocampus (CA3 fields) was recorded during "animal hypnosis" in rabbits. The "animal hypnosis" produced asymmetry in the spectral power of the hippocampal electrical activity due to an increase in the power of delta 1, delta 2, and theta 1 components in the left-hippocampus and decrease in the spectral power in the same ranges in the right-hippocampus. Hemispheric asymmetry in the electrical activity during the "animal hypnosis" was also expressed in the indices of coherence between the sensorimotor cortex and hippocampus. EEG coherence between the left sensorimotor cortex and left hippocampus in the delta 1, theta 1, and theta 2 ranges was higher than that between the right-side structures.  相似文献   

2.
Two kinds of dominanta were simultaneously formed under conditions of chronic experiments in rabbits. The motor polarization dominanta was formed under exposure of the right sensorimotor cortex of an animal to direct anodic current, and the state of "animal hypnosis" (the second dominanta) was induced. Animal behavior and electrophysiological characteristics were recorded. It was shown that the "animal hypnosis" induced at the optimum of the right motor polarization dominanta inhibited the motor reaction of the "dominant" extremity to testing stimuli. After the "animal hypnosis session, exposure of the right sensorimotor cortex to anodic current produced the latent excitation focus, which did not reach the level of summation. Two days later, exposure to testing stimuli developed the latent foci at first in the right cortex and then in subcortical structures. In the course of recovery of the motor polarization dominanta and its further change for the state characteristic of the "animal hypnosis", the patterns of cortical EEG coherence in the delta range typical of each kind of dominanta alternated in parallel with the time course of state changes.  相似文献   

3.
Relations between activities of neurons simultaneously recorded in the left and right sensorimotor brain cortices of rabbits were analyzed in a series of experiments before the induction of the immobilization state ("animal hypnosis"), in the state of immobilization, and after its termination. The total baseline percent of significant correlations between activities of neighboring (within 50 microns) neurons in the left hemisphere was significantly lower than in the right hemisphere. This characteristic of the left hemisphere changed neither in the immobilization state nor after its termination. In the right-hemisphere cortex, the total percent of correlations between neighboring neurons significantly decreased during immobilization and returned to the baseline level after the termination of this state. In contrast, percent of correlations between the activities of remote (within 500 microns) neurons in the right-hemisphere did not change during immobilization, whereas in the left cortex it changed significantly and reached its baseline level after the normalization of rabbit's state. Further analysis showed that the revealed cortical interhemispheric asymmetry is underlain by asymmetric activities of individual neurons and small neuronal populations. Thus, for example, changes in the structure of interneuronal correlations in cortical microareas of the left and macroareas of the right hemispheres could be of different directions, whereas correlated activities in microareas of the right and macroareas of the left-hemispheres could change synergetically. In other words, asymmetry was revealed at different levels of neuronal integration (neuronal pairs, micro- or macrogroups of neurons). This finding testifies to a mosaic character of neuronal activity, which finally results in the general functional asymmetry during the "animal hypnosis". Certain changes in the structure of functional relations between neurons of the sensorimotor cortex that developed in the state of "animal hypnosis" persisted and even augmented after the termination of this state.  相似文献   

4.
The dynamics of changes in intercentral relations of electrical activity of the sensorimotor and premotor zones of both hemispheres and the ventroposterolateral (VPL) nucleus of the left and right thalamus at formation of motor dominant under the action of the DC anode in the rabbit sensorimotor cortex was studied by the method of spectral-correlation analysis. It is shown that in the much less than dominant much greater than motor analyzer (the sensorimotor cortex and VPL) highly coherent connections of electrical processes are formed in the delta-range with conjugated lowering of biopotential connections between the structures of the motor analyzer of the much less than nondominant much greater than part of the brain. At the same time differently directed connections of electrical processes are formed between the structures of the motor analyzer, and between the premotor cortex and focus area. Thus, during formation of the much less than polarization much greater than dominant, a new structure of the intercentral relations of electrical processes is established not only in the much less than dominant much greater than but also in the other half of the brain.  相似文献   

5.
Multiunit activity was recorded in left and right sensorimotor cortex of rabbits in the state of tonic immobility. After the first immobilization session, the discharge frequency changed in 47% cells in the right hemisphere: 30% decreased their frequency, and 17% increased. In the left hemisphere, only 18% cells changed their discharge frequency (13% decreased and 5% increased). Reciprocal changes in discharge frequency could be observed in the neighboring neurons (recorded by the same electrode). Several days later, after the second immobilization session, the interhemispheric difference in the number of neurons, whose activity changed, almost disappeared (21% neurons in the right and 24% neurons in the left hemispheres). The relationship between the number of cortical neurons, which increased and decreased their activities in the state of "hypnosis" also became similar in the right and left hemispheres. A suggestion about the involvement of cortical neurons in organization of the state of "animal hypnosis" was made.  相似文献   

6.
A hidden excitation focus (dominanta focus) was produced in the rabbit's CNS by threshold electrical stimulation of the left forelimb with the frequency of 0.5 Hz. As a rule, after the formation of the focus, pairs of neurons with prevailing two-second rhythm in their correlated activity were revealed both in the left and right sensorimotor cortices (with equal probabilities 29.3 and 32.4%, respectively). After "animal hypnosis" induction, the total percent of neuronal pairs with the prevalent dominanta-induced rhythm decreased significantly only in the right hemisphere (21%). After the termination of the "animal hypnosis" state, percent of neuronal pairs in the right cortex with prevailing two-second rhythm significantly increasead if the neurons in a pair were neighboring and decreased if they were remote from each other. Similar changes after the hypnotization were not found in the left cortex. Analysis of correlated activity of neuronal pairs with regard to amplitude characteristics showed that for both the right and left hemispheres, the prevalence of the two-second rhythm was more frequently observed in crosscorrelation histograms constructed regarding discharges of neurons with the lowest spike amplitude (in the right hemisphere) or the lowest and mean amplitudes (in the left hemisphere) selected from multiunit records.  相似文献   

7.
The character of functional connections between the midbrain reticular formation (RF) and the neocortex was studied in rabbits. Unit activity was recorded in sensorimotor cortex by extracellular microelectrode during RF stimulation. Short-latency neuronal reactions were found presumably identified as monosynaptic responses. Results of the studies of anterograde degeneration of myelinic fibers and axonal terminals after electrocoagulation of the RF carried out with the help of electronic microscope allowed to suppose that there were few (less than 0.5 per cent) monosynaptic connections between the RF and the sensorimotor cortex. The main forms of direct connections between these structures were axo-dendritic (situated at the dendritic trunk) and axosomatic synapses at the neurones of the sensorimotor cortex.  相似文献   

8.
A stationary excitation focus produced in the sensorimotor cortex of a rabbit by rhythmic electrodermal paw stimulation was manifested in the reaction to a testing sound stimulus earlier indifferent for the animal. Regardless of the stimulated paw (left or right), reactions to the testing stimuli appeared approximately in the equal percent of cases (70.7% and 71.5%, respectively). After a single-trial induction of the "animal hypnosis" state, it was difficult to produce the dominant focus by simulation of the left paw, whereas the results of the right-paw stimulation did not differ from those obtained during control stimulation. Consequently, the influence of hypnosis on defensive stationary excitation foci in different hemispheres was not the same.  相似文献   

9.
Writing is a highly skilled and overlearned movement. In patients suffering from writer's cramp, a focal task-induced dystonia, writing is impaired or even impossible due to involuntary muscle contractions and abnormal posture, which occur as soon as the person picks up a pen or within writing a few words. The underlying pathophysiological mechanisms of this movement disorder are not fully understood up to now. The aim of the present study was to unravel the oscillatory network underlying physiological writing in healthy subjects and dystonic writing in writer's cramp patients. Using whole-head magnetoencephalography (MEG) and the analysis tool dynamic imaging of coherent sources (DICS) we studied oscillatory neural coupling during writing in eleven healthy subjects and eight patients suffering from writer's cramp. Simultaneous recording of brain activity with MEG and activity of forearm and hand muscles with surface electromyography (EMG) was performed while subjects were writing for five minutes with their dominant right hand. Applying DICS sources of strongest cerebro-muscular coherence and cerebro-cerebral coherence during writing were identified, which consistently included six brain areas in both, the control subjects and the patients: contralateral and ipsilateral sensorimotor cortex, ipsilateral cerebellum, contralateral thalamus, contralateral premotor and posterior parietal cortex. Coherence between cortical sources and muscles appeared primarily in the frequency of writing movements (3-7 Hz) while coherence between cerebral sources occurred primarily around 10 Hz (8-13 Hz). Interestingly, consistent coupling between both sensorimotor cortices was observed in patients only, whereas coupling between ipsilateral cerebellum and the contralateral posterior parietal cortex was found in control subjects only. These results are consistent with the often described bilateral pathophysiology and impaired sensorimotor integration in writer's cramp patients.  相似文献   

10.
After unilateral stroke, the dorsal premotor cortex (PMd) in the intact hemisphere is often more active during movement of an affected limb. Whether this contributes to motor recovery is unclear. Functional magnetic resonance imaging (fMRI) was used to investigate short-term reorganization in right PMd after transcranial magnetic stimulation (TMS) disrupted the dominant left PMd, which is specialized for action selection. Even when 1 Hz left PMd TMS had no effect on behavior, there was a compensatory increase in activity in right PMd and connected medial premotor areas. This activity was specific to task periods of action selection as opposed to action execution. Compensatory activation changes were both functionally specific and anatomically specific: the same pattern was not seen after TMS of left sensorimotor cortex. Subsequent TMS of the reorganized right PMd did disrupt performance. Thus, this pattern of functional reorganization has a causal role in preserving behavior after neuronal challenge.  相似文献   

11.
By the method of spectral-correlation analysis, the dynamics was studied of changes in intercentral relations of electrical activity in the sensorimotor and premotor cortices of both cerebral hemispheres during formation, course, recovery and extinction of motor dominant created by a single action of DC anode in rabbits sensorimotor cortex. The motor dominant is capable to be preserved during the test for a long time after DC switching off and to recover in subsequent days under the action of testing stimuli. It should be noted that the recovery of the structure of intercentral relations of electrical brain activity, characteristic of dominant state, takes place much earlier than the motor "dominant" reaction.  相似文献   

12.
The motivational condition of hunger and formation of the hunger dominant after daily food deprivation was studied in the conditions of chronic experiments on rabbits. It was shown, that the hunger condition was accompanied by left sided interhemispher asymmetry on indicators of spectral capacity of EEG frontal and right-hand asymmetry sensorimotor areas of the cortex. A hunger dominant was accompanied by falling of spectral capacity of EEG of areas of both hemispheres. The condition of hunger and a hunger dominant were characterized by right-hand asymmetry on average level of EEG coherence of frontal and sensorimotor areas. At transition of a condition of hunger in a hunger dominant there was an average level of EEG coherence decrease in areas of the right hemisphere. Electric processes of the cortex of the brain at a motivational condition of hunger and a hunger dominant were different.  相似文献   

13.
In a computer controlled experiment the electric activity of rabbits right sensorimotor cortex was recorded in the area of the excitation focus produced by the direct current (2 mcA) application. The current was switched on at the 5th, 10th and 15th minutes of experiment only in cases when the mean amplitude of the delta waves exceeded the baseline. The current was switched off at the mean amplitude of the delta waves exceeding the baseline level by 50%. After training some experiments (2-4), rabbits learned to change their functional state in such way that they "avoided" the action of the direct current.  相似文献   

14.
BackgroundWriting is a sequential motor action based on sensorimotor integration in visuospatial and linguistic functional domains. To test the hypothesis of lateralized circuitry concerning spatial and language components involved in such action, we employed an fMRI paradigm including writing and drawing with each hand. In this way, writing-related contributions of dorsal and ventral premotor regions in each hemisphere were assessed, together with effects in wider distributed circuitry. Given a right-hemisphere dominance for spatial action, right dorsal premotor cortex dominance was expected in left-hand writing while dominance of the left ventral premotor cortex was expected during right-hand writing.MethodsSixteen healthy right-handed subjects were scanned during audition-guided writing of short sentences and simple figure drawing without visual feedback. Tapping with a pencil served as a basic control task for the two higher-order motor conditions. Activation differences were assessed with Statistical Parametric Mapping (SPM).ResultsWriting and drawing showed parietal-premotor and posterior inferior temporal activations in both hemispheres when compared to tapping. Drawing activations were rather symmetrical for each hand. Activations in left- and right-hand writing were left-hemisphere dominant, while right dorsal premotor activation only occurred in left-hand writing, supporting a spatial motor contribution of particularly the right hemisphere. Writing contrasted to drawing revealed left-sided activations in the dorsal and ventral premotor cortex, Broca’s area, pre-Supplementary Motor Area and posterior middle and inferior temporal gyri, without parietal activation.DiscussionThe audition-driven postero-inferior temporal activations indicated retrieval of virtual visual form characteristics in writing and drawing, with additional activation concerning word form in the left hemisphere. Similar parietal processing in writing and drawing pointed at a common mechanism by which such visually formatted information is used for subsequent sensorimotor integration along a dorsal visuomotor pathway. In this, the left posterior middle temporal gyrus subserves phonological-orthographical conversion, dissociating dorsal parietal-premotor circuitry from perisylvian circuitry including Broca''s area.  相似文献   

15.
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.  相似文献   

16.
Prestimulus EEG was recorded in the state of "operative rest" after the instruction and at the stages of formation, actualization, and extinction of unconscious visual set to perception of unequal circles. Two motivation conditions were used: (1) subjects were promised to be rewarded with a small money price for each correct response (a "general" rise of motivation) and (2) only correct assessments of stimuli of a certain kind were rewarded (a "selective" rise of motivation). In both conditions, additional motivation of subjects to the results of their performance led to an increase in EEG coherence most pronounced in the theta and alpha 1 frequency ranges in the left temporal area of the cortex. During the "general" rise of motivation the EEG coherence (as compared to the control group) was higher in a greater number of derivation pairs than during the "selective" rise. EEG coherence in "motivated" subjects was increased already at the stage of operative rest. Later on, at the set stages, no significant changes were revealed. Thus, the realized set formed by the verbal instruction, which increased motivation of subjects to the results of their performance, produced substantially more prominent changes in coherence of cortical potentials than the unconscious set formed during perception of visual stimuli.  相似文献   

17.
The computer analysis was given to simultaneous records of the electrical activity of the premotor, motor, parietal and visual areas of the right and the left hemispheres during the creation of the posture dominant through polarization of the premotor area of the right cerebral hemisphere of a rabbit. The formation of the dominant was accompanied by a general rearrangement of the whole neocortex electrical activity toward an increase in the power of delta-frequency and the rise of the level of the coherence between biopotentials within the same range. After switching off of the direct current, the same form of biopotentials' rearrangement pertained, as during the current action; in some rabbits a small rise in the power spectrum as well as an increase in the coherence function was also noticed within the beta-range.  相似文献   

18.
Inter- and intrahemispheric relations of electrical activity of the pre-motor, sensorimotor (representation of forelimb and blinking) and visual zones of rabbit's cerebral cortex in calm alertness was studied by method of spectral-correlative analysis. Mean coherence levels of the EEG of tested hemispheric symmetric points and symmetric pairs of leads in the left and right hemispheres were characterized by a high temporal stability in the state of calm alertness and during sensory stimulation. A comparison of mean coherence values of EEG in symmetric leads, revealed a tendency to left-side dominance of statistical bonds of electrical processes. A tendency was shown towards interhemispheric asymmetry by mean parameters of EEG power spectra: the left hemisphere of the rabbit is characterized by a lower mean frequency of electrical activity and a more narrow effective frequency of the spectrum.  相似文献   

19.
The spectral-correlation analysis of biopotentials in the cortex and some other brain structures (the anteroventral thalamic nucleus, dorsal hippocampus, lateral geniculate body, mid-brain reticular formation), in chronic experiments on alert rabbits, revealed that during electrical stimulation of thalamic mid-line nuclei within the ranges of 1-3, 4-7 and 8-10 c/s, there occured a rearrangement of the EEG frequencies; a dominant, narrow-band peak at the stimulation frequency, appeared. The coherence of the biopotentials of different cortical areas, of the cortex and subcortical formations increased during the stimulation at the frequency of the stimulation, reaching maximum values between the potentials of the visual and sensorimotor cortical areas.  相似文献   

20.
Readiness potentials on voluntary hand movements were recorded from the scalp (C3, C4), premotor cortex, subcortical white matter and VL nucleus of the thalamus. Subjects were healthy right-handed men and patients with involuntary movement disorders. We obtained a slow negative shift of brain electrical potentials from the scalp and cortex preceding voluntary hand movements. The mean time interval between the onset of the readiness potential and the onset of motor activity (mean T) was 0.8 sec on right hand movements and 1.0 sec on left hand movements in healthy men. In cases with parkinsonism, the mean T value was 1.4 sec in patients with akinesia, 1.1 sec in those without akinesia. The amplitude of readiness potentials was higher in the scalp contralateral to the hand movement. The readiness potentials recorded from the VL nucleus and white matter were reversed in polarity from those of scalp and cortex. Simultaneous recordings from cortex and VL nucleus showed early onset of readiness potentials from the cortex by approximately 0.1 sec compared with the VL nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号