首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sodium channel purified from rat brain is a heterotrimeric complex of alpha (Mr 260,000), beta 1 (Mr 36,000), and beta 2 (Mr 33,000) subunits. alpha and beta 2 are attached by disulfide bonds. Removal of beta 1 subunits by incubation in 1.0 M MgCl2 followed by reconstitution into phospholipid vesicles yielded a preparation of alpha beta 2 which did not bind [3H]saxitoxin, mediate veratridine-activated 22Na+ influx, or bind the 125I-labeled alpha-scorpion toxin from Leiurus quinquestriatus (LqTx). In contrast, removal of beta 2 subunits by reduction of disulfide bonds with 1.5 mM dithiothreitol followed by reconstitution into phospholipid vesicles yielded a preparation of alpha beta 1 that retained full sodium channel function. Alpha beta 1 bound [3H]saxitoxin with a KD of 4.1 nM at 36 degrees C. It mediated veratridine-activated 22Na+ influx at a comparable initial rate as intact sodium channels with a K0.5 for veratridine of 46 microM. Tetracaine and tetrodotoxin blocked 22Na+ influx. Like intact sodium channels, alpha beta 1 bound 125I-LqTx in a voltage-dependent manner with a KD of approximately 6 nM at a membrane potential of -60 mV and was specifically covalently labeled by azidonitrobenzoyl 125I-LqTx. When incorporated into planar phospholipid bilayers, alpha beta 1 formed batrachotoxin-activated sodium channels of 24 pS whose voltage-dependent activation was characterized by V50 = -110 mV and an apparent gating charge of 3.3 +/- 0.3. These results indicate that beta 2 subunits are not required for the function of purified and reconstituted sodium channels while a complex of alpha and beta 1 subunits is both necessary and sufficient for channel function in the purified state.  相似文献   

2.
Purified sodium channels incorporated into phosphatidylcholine (PC) vesicles mediate neurotoxin-activated 22Na+ influx but do not bind the alpha-scorpion toxin from Leiurus quinquestriatus (LqTx) with high affinity. Addition of phosphatidylethanolamine (PE) or phosphatidylserine to the reconstitution mixture restores high affinity LqTx binding with KD = 1.9 nM for PC/PE vesicles at -90 mV and 36 degrees C in sucrose-substituted medium. Other lipids tested were markedly less effective. The binding of LqTx in vesicles of PC/PE (65:35) is sensitive to both the membrane potential formed by sodium gradients across the reconstituted vesicle membrane and the cation concentration in the extravesicular medium. Binding of LqTx is reduced 3- to 4-fold upon depolarization to 0 mV from -50 to -60 mV in experiments in which [Na+]out/[Na+]in is varied by changing [Na+]in or [Na+]out at constant extravesicular ionic strength. It is concluded that the purified sodium channel contains the receptor site for LqTx in functional form and that restoration of high affinity, voltage-dependent binding of LqTx by the purified sodium channel requires an appropriate ratio of PC to PE and/or phosphatidylserine in the vesicle membrane.  相似文献   

3.
The purification of axonal membranes of crustaceans was followed by measuring enrichment in [3H]tetrodotoxin binding capacity and in Na+, K+-ATPase activity. A characteristic of these membranes is their high content of lipids and their low content of protein as compared to other types of plasmatic membranes. The axonal membrane contains myosin-like, actin-like, tropomyosin-like, and tubulin-like proteins. It also contains Na+, K+-ATPase and acetylcholinesterase. The molecular weights of these two enzymes after solubilization are 280,000 and 270,000, respectively. The molecular weights of the catalytic subunits are 96,000 for ATPase and 71,000 for acetylcholinesterase. We confirmed the presence of a nicotine binding component in the axonal membrane of the lobster but we have been unable to find [3H]nicotine binding to crab axonal membranes. The binding to axonal membranes og of the sodium channel, has been studied in detail. The dissociation constant for the binding of [3H]tetrodotoxin to the axonal membrane receptor is 2.9 nM at pH 7.4. The concentration of the tetrodotoxin receptor in crustacean membranes is about 10 pmol/mg of membrane protein, 7 times less than the acetylcholinesterase, 30 times less than the Na+, K+-ATPase, and 30 times less than the nicotine binding component in the lobster membrane. A reasonable estimate indicates that approximately only one peptide chain in 1000 constitutes the tetrodotoxin binding part of the sodium channel in the axonal membrane. Veratridine, which acts selectively on the resting sodium permeability, binds to the phospholipid part of the axonal membrane. [3H]Veratridine binding to membranes parallels the electrophysiological effect. Veratridine and tetrodotoxin have different receptor sites. Although tetrodotoxin can repolarize the excitable membrane of a giant axon depolarized by veratridine, veratridine does not affect the binding of [3H]tetrodotoxin to purified axonal membranes. Similarly, tetrodotoxin does not affect the binding of [3H]veratridine to axonal membranes. Scorpion neurotoxin I, a presynaptic toxin which affects both the Na+ and the K+ channels, does not interfere with the binding of [3H]tetrodotoxin or [3H]veratridine to axonal membranes. Tetrodotoxin, veratridine, and scorpion neurotoxin I, which have in common the perturbation of the normal functioning of the sodium channel, act upon three different types of receptor sites.  相似文献   

4.
Binding sites having the characteristics of receptors for "activated" alpha 2-macroglobulin (alpha 2M) have been solubilized with octyl-beta-D-glucoside from fibroblast membranes. When the detergent was removed by dialysis, the resulting insoluble extract was shown to bind 125I-alpha 2M specifically. Analysis of the binding data using a nonlinear curve-fitting program suggests that the solubilized preparation contains two classes of binding sites (KD = 0.34 nM and KD = 104 nM). Membranes or solubilized extracts from KB cells which lack alpha 2M binding sites did not specifically bind 125I-alpha 2M. The solubilized binding sites from fibroblasts were inactivated by boiling and trypsin treatment, and required Ca+2 for maximal binding. In addition, the high affinity binding of 125I-alpha 2M to the solubilized receptor was inhibited by bacitracin and by alpha-bromo-5-iodo-4-hydroxy-3-nitroacetophenone, two agents which interfere with the uptake of alpha 2M in cultured fibroblasts. Using a combination of ion exchange and gel permeation chromatography, we have purified the high affinity alpha 2M binding site approximately 100-fold from membrane derived from NIH-3T3 (spontaneously transformed) fibroblasts grown as tumors in mice. The receptor is apparently an acidic protein and the receptor octyl-beta-D-glucoside complex has a Stokes radius of 45-50 A as measured by gel filtration.  相似文献   

5.
125I]iodopindolol: a new beta adrenergic receptor probe   总被引:1,自引:0,他引:1  
When utilizing iodohydroxybenzylpindolol (IHYP) as an adrenergic receptor probe in muscle membrane systems, the data demonstrated an unacceptably high nonspecific binding component. Bearer et al. have reported that chloramine-T induced iodination of hydroxybenzylpindolol (HYP) results in the incorporation of iodine into the indole ring rather than into the phenolic moiety as noted previously by others. These results suggest that pindolol itself can also be iodinated. Therefore, the usefulness of carrier free 125I-labeled iodopindolol (IPIN) as an adrenergic receptor probe was investigated. Using between 0.01 nM and 0.1 nM [125I]IPIN in two different muscle membrane systems, we found the nonspecific binding component to be 10% or less of total binding. When [125I]IPIN was used with membranes prepared from rat skeletal muscle, we found it to interact with a single set of high affinity binding sites (KD = 0.13 +/- 0.01 nM) with the characteristics of beta adrenergic receptors and a density of 48.5 fmoles/mg protein. IPIN binding was also studied with purified dog cardiac sarcolemma. A single set of binding sites was detected having a KD of 1.64 +/- 0.5 nM; the density of these sites was 289 fmoles/mg membrane protein. [125I]IPIN may be a useful probe for the beta adrenergic receptor of tissues in which [125I]IHYP and other beta adrenergic receptor probes have a non-specific binding component which approaches that of the specific binding component.  相似文献   

6.
The effects of Mg2+ or ethylenediaminetetraacetic acid (EDTA) on 125I-glucagon binding to rat liver plasma membranes have been characterized. In the absence of guanosine 5'-triphosphate (GTP), maximal binding of 125I-glucagon occurs in the absence of added Mg2+. Addition of EDTA or Mg2+ diminishes binding in a dose-dependent manner. In the presence of GTP, maximal binding occurs in the presence of 2.5 mM Mg2+ (EC50 = 0.3 mM) while EDTA or higher concentrations of Mg2+ diminish binding. Response to exogenous Mg2+ or EDTA depends on the concentration of Mg2+ in the membranes and may vary with the method used for membrane isolation. Solubilized 125I-glucagon-receptor complexes fractionate on gel filtration columns as high molecular weight, GTP-sensitive complexes in which receptors are coupled to regulatory proteins and lower molecular weight, GTP-insensitive complexes in which receptors are not coupled to other components of the adenylyl cyclase system. In the absence of GTP, 40 mM Mg2+ or 5 mM EDTA diminishes receptor affinity for hormone (from KD = 1.2 +/- 0.1 nM to KD = 2.6 +/- 0.3 nM) and the fraction of 125I-glucagon in high molecular weight receptor-Ns complexes without affecting site number (Bmax = 1.8 +/- 0.1 pmol/mg of protein). Thus, while GTP promotes disaggregation of receptor-Ns complexes, Mg2+ or EDTA diminishes the affinity with which these species bind hormone. In the presence of GTP, hormone binds to lower affinity (KD = 9.0 +/- 3.0 nM), low molecular weight receptors uncoupled from Ns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A 7- dimethylaminocoumarin -4-acetate fluorescent derivative of toxin II from the venom of the scorpion Centruroides suffusus suffusus (Css II) has been prepared to study the structural, conformational, and cellular properties of the beta-neurotoxin receptor site on the voltage-dependent sodium channel. The derivative retains high affinity for its receptor site on the synaptosomal sodium channel with a KD of 7 nM and site capacity of 1.5 pmol/mg of synaptosomal protein. The fluorescent toxin is very environmentally sensitive and the fluorescence emission upon binding indicates that the Css II receptor is largely hydrophobic. Binding of tetrodotoxin or batrachotoxin does not alter the spectroscopic properties of bound Css II, whereas toxin V from Leiurus quinquestriatus effects a 10-nm blue shift to a more hydrophobic environment. This is the first direct indication of conformational coupling between these separate neurotoxin receptor sites. The distance between the tetrodotoxin and Css II scorpion toxin receptors on the sodium channel was measured by fluorescence resonance energy transfer. Efficiencies were measured by both donor quenching and acceptor-sensitized emission. The distance between these two neurotoxin sites is about 34 A. The implications of these receptor locations together with other known molecular distances are discussed in terms of a molecular structure of the voltage-dependent sodium channel.  相似文献   

8.
alpha 1-Adrenergic receptor probes, which can be radioiodinated to yield high specific activity radioligands, have been synthesized and characterized. 2-[4-(4-Amino-benzoyl)piperazin-1-yl]-4-amino-6,7-dimethoxyquin azoline (CP63,155), an arylamine analogue of the selective alpha 1-adrenergic antagonist prazosin, and its iodinated derivative, 2-[4-(4-amino-3-[125I]iodobenzoyl)piperazin-1-yl]-4-amino-6, 7-dimethoxyquinazoline [( 125I]CP63,789), bind reversibly and with high affinity (KD = 1 nM and 0.6 nM, respectively) to rat hepatic membrane alpha 1-adrenergic receptors. Conversion of [125I]CP63,789 to the aryl azide yields a photolabile derivative, 2-[4-(4-azido-3-[125I]iodobenzoyl)piperazin-1-yl]-4-amino-6, 7-dimethoxyquinazoline [( 125I]CP65,526), which prior to photolysis binds competitively and with high affinity (KD = 0.3 nM). Binding of [125I]CP63,789 and [125I]CP65,526 (prior to photolysis) is rapid and saturable. Both ligands identify similar alpha 1-adrenergic receptor binding site concentrations as the parent probe, [3H]prazosin. Specific binding by these iodinated ligands is stereoselective and inhibited by a variety of adrenergic agents with a specificity typical of the alpha 1-adrenergic receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography of [125I]CP65,526-labeled rat hepatic membranes reveal major protein species with molecular weights of 77K, 68K and 59K. Each protein binds adrenergic ligands with stereoselectivity and with a specificity typical of the alpha 1-adrenergic receptor. Inclusion of multiple protease inhibitors during membrane preparation prior to SDS-PAGE does not alter the labeling of these peptides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The selective delta opioid agonist [D-Ala2]deltorphin-I was radioiodinated and the product purified using reverse phase HPLC. The binding characteristics and distribution profile of [125I][D-Ala2]deltorphin-I were assessed in mouse brain using homogenate binding techniques and quantitative autoradiography. [125I][D-Ala2]deltorphin-I bound with high affinity to a single class of sites (KD = 0.5 nM) in brain membrane preparations and striatal sections. Competition studies indicated that [125I][D-Ala2]deltorphin-I was selectively labeling delta opioid receptors as shown by the ratio of apparent affinities for mu and delta receptors (KI mu/KI delta = 1388). The autoradiographical distribution profile of [125I][D-Ala2]deltorphin-I binding sites was also consistent with that of other delta-selective radioligands. The data indicate that [125I][D-Ala2]deltorphin-I binds to delta opioid receptors with high affinity and selectivity. Because of its very high specific activity, it can be detected rapidly with high sensitivity by autoradiographic emulsion.  相似文献   

10.
The presence of four cation pathways in membrane vesicles isolated from transverse tubules of frog and rabbit skeletal muscle was studied by measuring binding of specific blockers. Transverse tubules purified from frog muscle have a maximal binding capacity for [3H]nitrendipine (a marker for voltage-dependent calcium channels) of 130 pmol/mg of protein; this binding is strongly dependent on temperature and, at 37 degrees C, on the presence of diltiazem. Receptors for [3H]ethylenediamine tetrodotoxin (a marker for voltage-dependent sodium channels) and for 125I-labeled alpha-bungarotoxin (a marker for acetylcholine-mediated channels) showed maximal binding values of about 5 pmol/mg. The number of sodium-pumping sites in the isolated tubule vesicles, inferred from [3H]ouabain binding, was 215 pmol/mg. The high purity of this preparation makes feasible the use of these values as a criterion to judge the degree of purity of isolated preparations, and it allows investigation of transverse tubule contamination in other muscle membrane fractions.  相似文献   

11.
Cell membranes isolated from hamster insulinoma (HIT T15) cells at passages 65-74 contain high and low affinity receptors for a sulfonylurea derivative, 5-[125I]iodo,2-hydroxyglyburide (KD values of approximately 7 nM and 16 microM). Between passages 75 and 85, the estimated B(max) for the high affinity receptor decreases approximately 10-fold from approximately 1.6 to 0.16 pmol/mg membrane protein. By contrast, the density of low affinity binding sites, 800-1000 pmol/mg, is unaltered. The drop in high affinity receptors is paralleled by a decrease in the density of KATP channels assessed using patch-clamp and 86Rb(+)-efflux techniques. These results strongly support the idea that the high affinity sulfonylurea receptor is an integral part of the KATP channel.  相似文献   

12.
Extracts prepared from heads of Drosophila melanogaster show high-affinity binding (KD = 1.9 nM) of [3H]saxitonin, a compound known to bind to and block voltage-sensitive sodium channels in other organisms. The interaction between saxitoxin and the Drosophila saxitoxin receptor is non-cooperative and reversible with a half-life of 18.3 s for binding at 4 degrees C. The saturable binding is specifically inhibited by tetrodotoxin with a K1 = 0.30 nM. The number of saturable binding sites in the extract is 97 fmol/mg protein. Since approx. 50% of the binding activity is recovered in the extract, the number of binding sites in the head is estimated to be 6.4 fmol/mg head. Nerve conduction in Drosophila larvae is completely blocked after 20 min in a bathing solution containing 200 nM tetrodotoxin. A comparison between the binding and the electrophysiological studies in Drosophila and other organisms suggests that the Drosophila saxitoxin receptor is part of the voltage-sensitive sodium channel involved in the propagation of action potentials. A mutant (ttxs), which is abnormally sensitive to dietary tetrodotoxin, is shown to be indistinguishable from wild type with respect to [3H]saxitonin-binding properties and physiological sensitivity to tetrodotoxin. These studies provide techniques which can be used to identify mutants with defects in the saxitoxin-binding component of the sodium channel.  相似文献   

13.
Abstract: 125I-α-Bungarotoxin (α-BGT) was used to characterize the binding sites for cholinergic ligands in lobster walking leg nerve membranes. The toxin binding component has been visualized histochemically on the external surfaces of intact axons and isolated axonal membrane fragments. Binding of α-BGT to nerve membrane preparations was demonstrated to be saturable and highly reversible ( K Dapp± 1.7 ± 0.32 × 10-7 M; B max± 249 ± 46 pmol/mg protein) at pH 7.8, 10 mM-Tris buffer. Binding showed a marked sensitivity to ionic strength that was attributable to the competitive effects of inorganic cations (particularly Ca2+ and Mg2+) in the medium. 125I-α-BGT binding could be inhibited by cholinergic drugs (atropine ≅ d -tubocurarine > nicotine > carbamylcholine ≅ choline) and local anesthetics (procaine > tetracaine = lidocaine), but was unaffected by other neuroactive compounds tested (e.g., tetrodotoxin, 4-aminopyridine, quinuclidinyl benzilate, octopamine, bicuculline, haloperidol, ouabain). The pharmacological sensitivity of toxin binding resembles that of nicotine binding to axonal membranes, but differs significantly from nicotinic cholinergic receptors described in neuromuscular junctions, fish electric organs, sympathetic ganglia, and the CNS. The possible physiological relevance of the axonal cholinergic binding component and its relationship to α-BGT binding sites in other tissues are discussed.  相似文献   

14.
This report describes Ca2+-dependent binding of 125I-labeled calmodulin (125I-CaM) to erythrocyte membranes and identification of two new CaM-binding proteins. Erythrocyte CaM labeled with 125I-Bolton Hunter reagent fully activated erythrocyte (Ca2+ + Mg2+)-ATPase. 125I-CaM bound to CaM depleted membranes in a Ca2+-dependent manner with a Ka of 6 x 10(-8) M Ca2+ and maximum binding at 4 x 10(-7) M Ca2+. Only the cytoplasmic surface of the membrane bound 125I-CaM. Binding was inhibited by unlabeled CaM and by trifluoperazine. Reduction of the free Ca2+ concentration or addition of trifluoperazine caused a slow reversal of binding. Nanomolar 125I-CaM required several hours to reach binding equilibrium, but the rate was much faster at higher concentrations. Scatchard plots of binding were curvilinear, and a class of high affinity sites was identified with a KD of 0.5 nM and estimated capacity of 400 sites per cell equivalent for inside-out vesicles (IOVs). The high affinity sites of IOVs most likely correspond to Ca2+ transporter since: (a) Ka of activation of (Ca2+ + Mg2+)-ATPase and KD for binding were nearly identical, and (b) partial digestion of IOVs with alpha-chymotrypsin produced activation of the (Ca2+ + Mg2+)-ATPase with loss of the high affinity sites. 125I-CaM bound in solution to a class of binding proteins (KD approximately 55 nM, 7.3 pmol per mg of ghost protein) which were extracted from ghosts by low ionic strength incubation. Soluble binding proteins were covalently cross-linked to 125I-CaM with Lomant's reagent, and 2 bands of 8,000 and 40,000 Mr (Mr of CaM subtracted) and spectrin dimer were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. The 8,000 and 40,000 Mr proteins represent a previously unrecognized class of CaM-binding sites which may mediate unexplained Ca2+-induced effects in the erythrocyte.  相似文献   

15.
The binding properties of opioid receptors on isolated nerve terminals (neurosecretosomes) from bovine posterior pituitaries were characterized. Both [3H]etorphine and [3H]ethylketocyclazocine ([3H]EKC) showed high-affinity binding with complex binding isotherms, consistent with the presence of multiple classes of binding sites. [D-Ala2,D-Leu5]enkephalin showed no specific binding and failed to displace [3H]etorphine at high concentrations, indicating the absence of mu, delta, or benzomorphan (kappa 2) sites. Mathematical modelling of the data suggested the presence of three classes of binding sites. The first was of high affinity with Kd values of 0.9 and 2.0 nM for etorphine and EKC, respectively. The second class of sites appeared to bind etorphine with a KD of 150 nM, and EKC with extremely low affinity (unmeasurable binding). The third class of sites was characterized by KD values of 7 and 2 microM for etorphine and EKC, respectively. These results indicate that the nerve terminals of bovine posterior pituitary contain opioid binding sites of the kappa type. Furthermore, these binding sites appear heterogeneous, consisting of at least two and possibly more subtypes or states.  相似文献   

16.
We have previously shown that the antireceptor antibody alpha IR-3 inhibits binding of 125I-somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) to the 130-kDa alpha subunit of the type I receptor in human placental membranes, but does not block 125I-insulin-like growth factor II (IGF-II) binding to a similar 130-kDa complex in these membranes. To determine whether the 130-kDa 125I-IGF-II binding complex represents a homologous receptor or whether 125I-IGF-II binds to the type I receptor at a site that is not blocked by alpha IR-3, type I receptors were purified by affinity chromatography on Sepharose linked alpha IR-3. The purified receptors bound both 125I-Sm-C/IGF-I and 125I-IGF-II avidly (KD = 2.0 X 10(-10) M and 3.0 X 10(-10) M, respectively). The maximal inhibition of 125I-Sm-C/IGF-I binding by the antibody, however, was 62% while only 15% of 125I-IGF-II binding was inhibited by alpha IR-3. In the presence of 500 nM alpha IR-3, Sm-C/IGF-I bound with lower affinity (KD = 6.5 X 10(-10) M) than IGF-II (KD = 4.5 X 10(-10) M) and IGF-II was the more potent inhibitor of 125I-Sm-C/IGF-I binding. These findings suggest that the type I receptor contains two different binding sites. The site designated IA has highest affinity for Sm-C/IGF-I and is blocked by alpha IR-3. Site IB has higher affinity for IGF-II than for Sm-C/IGF-I and is not blocked by alpha IR-3.  相似文献   

17.
Rat PC12 pheochromocytoma and human A875 melanoma cells express nerve growth factor (NGF) receptors on their surfaces. Covalent crosslinking of bound 125I-NGF to PC12 or A875 intact cells or plasma membrane-enriched fractions resulted in labelling of a peptide doublet at Mr = 110,000 and a single labelled peptide at Mr = 200,000 for each of the cell and membrane preparations. However, a difference between equilibrium binding properties of NGF-receptor on PC12 and A875 cells was observed. PC12 cells exhibited biphasic binding properties with two apparent binding sites: KD = 5.2 nM sites and KD = 0.3 nM sites. The high-affinity PC12 binding sites were trypsin resistant, and 125I-NGF dissociated slowly from them. A875 cells exhibited sites with homogeneous properties (KD = 1.0 nM), all binding sites were trypsin sensitive, and 125I-NGF dissociated rapidly in the presence of unlabelled NGF. Membrane-enriched fractions from either cell type contained binding sites with a uniform low affinity (KD = 3 nM) that were trypsin sensitive, and 125I-NGF rapidly dissociated from them. Sixty to 80 percent of binding sites in membranes could be converted to the high-affinity, trypsin-resistant state by addition of wheat germ agglutinin (WGA). The loss of high-affinity, trypsin-resistant sites from PC12 cells during preparation of plasma membrane fractions does not appear to be the result of selective isolation of low-affinity sites or proteolytic degradation since there is a loss of 125I-NGF binding immediately after cell lysis which is not blocked by protease inhibitors. Also, high-affinity, trypsin-resistant binding sites are not found associated with other cell fractions. The differences between receptor properties on PC12 cells and on A875 cells apparently are the result of differences in the respective intracellular environments. Thus, significant structural homology exists between receptors on A875 and PC12 cells. Cell components other than the binding unit of the NGF receptor may be responsible for the different properties of receptor.  相似文献   

18.
Binding of 125I-labelled tetanus toxin to rat brain membranes in 25 mM-Tris/acetate, pH 6.0, was saturable and there was a single class of high-affinity site (KD 0.26-1.14 nM) present in high abundance (Bmax. 0.9-1.89 nmol/mg). The sites were largely resistant to proteolysis and heating but were markedly sensitive to neuraminidase. Trisialogangliosides were effective inhibitors of toxin binding (IC50 10 nM) and trisialogangliosides inserted into membranes lacking a toxin receptor were able to bind toxin with high affinity (KD 2.6 nM). The results are consistent with previous studies and the hypothesis that di- and trisialogangliosides act as the primary receptor for tetanus toxin under these conditions. In contrast, when toxin binding was assayed in Krebs-Ringer buffer, pH 7.4, binding was greatly reduced, was non-saturable and competition binding studies showed evidence for a small number of high-affinity sites (KD 0.42 nM, Bmax. 0.90 pmol/mg) and a larger number of low-affinity sites (KD 146 nM, Bmax. 179 pmol/mg). Treatment of membranes with proteinases, heat, and neuraminidase markedly reduced binding. Trisialogangliosides were poor inhibitors of toxin binding (IC50 11.0 microM), and trisialogangliosides inserted into membranes bound toxin with low affinity. The results suggest that in physiological buffers tetanus toxin binds with high affinity to a protein receptor, and that gangliosides represent only a low-affinity site.  相似文献   

19.
Nuclear envelopes relatively free of plasma membrane contamination were isolated from the male rat liver. Equilibrium binding of T3 to nuclear envelopes occurred after incubation for 3 h at 20 degrees C. Scatchard analysis revealed two classes of binding sites; a high affinity site having a KD of 1.8 nM with a maximum binding capacity of 14.5 pmol/mg protein and a low affinity site having a KD of 152.1 nM with a maximum binding capacity of 346.8 pmol/mg protein. No degradation of the radioligand occurred during incubation with the nuclear envelope. T4, rT3 and Triac competed effectively for the binding of T3 to the high affinity site whereas only T4 competed well for binding to the lower affinity site. The binding site was protease sensitive but not salt extractable. Multiple T3 binding sites having similar affinities have been reported on plasma membranes. An intriguing possibility is that membrane binding sites may be involved in translocation of thyroid hormone across membrane barriers.  相似文献   

20.
In an attempt to identify potential regulatory mechanisms for erythrocyte membrane-cytoskeletal interactions, the kinetics and pH dependence of the band 3-ankyrin interaction were investigated. Association of 125I-ankyrin with KI-stripped inside-out erythrocyte membrane vesicles was found to proceed in two kinetic phases. The initial, fast phase (t1/2 approximately 15-30 min) involved predominantly the binding of ankyrin to low affinity sites (KD approximately 130 nM) in a pH-dependent manner. The apparent pKa values describing this reversible pH dependence (7.2 +/- 0.1 and 9.2 +/- 0.1) defined states of band 3 with high, moderate, and no capacity to bind ankyrin (in order of increasing pH). Since the cytoplasmic domain of band 3 also exists in 3 distinct conformational states characterized by apparent pKa values of 7.2 and 9.2, it was hypothesized that the reversible structural equilibrium in band 3 could influence ankyrin binding. The second or slow phase of ankyrin binding to band 3 involved the conversion of low to high affinity sites (KD approximately 13 nM). This phase, which was largely temperature and pH independent, required roughly an order of magnitude longer to reach completion than the fast phase. Unfortunately, even though the slow phase could be cleanly separated from the fast phase at low pH, insufficient data were available to formulate a physical interpretation of its origin. Significantly, however, even after completion of the slow phase under the most quantitative binding conditions identified, a maximum of only 26% of the band 3 was found to bind ankyrin in situ. Although higher ankyrin-band 3 stoichiometries may be achievable with the isolated cytoplasmic fragment of band 3, we interpret the above 1:4 stoichiometry to suggest that the tetramer of band 3 constitutes the predominant ankyrin binding oligomer of band 3 on the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号