首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prigent SR  Rajpurohit S 《Fly》2007,1(5):297-302
A century ago a little fly with red eyes was first used for genetic studies. That insignificant fly, called at that time Drosophila ampelophila, revolutionized biology while becoming the model we know today under the name of Drosophila melanogaster. Since then its study has never ceased, but the field of interest has somewhat changed during the century. To caricature a little, today we essentially learn from Drosophila meetings that the fly has a brain! It is true that the fly is a tremendous model organism for neurobiology. But this fly is, in fact, an appropriate and recognized model for the whole of biology. Indeed, Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds together. There we not only learn about the latest improvements in our field of interest, but surely appreciate learning another bit of biology. From this biological melting pot has emerged a culture very specific to the fly community. Thus besides neurobiology, cell biology and development, a diversity of other research fields exist; they all have their own place in the cultural and historical dimension of the "drosophila" model. Several communications from those diverse research fields were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and are briefly covered here. We believe it more judicious to call the model "drosophila" without a capital initial, as the model has never really been limited to only the Drosophila genus. The vernacular name "drosophila" is currently used to designate any fly of the Drosophilidae family and we believe the term more appropriate than "small fruit fly" or "vinegar fly" to better include the species and ecological diversity of the model.  相似文献   

2.
We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.  相似文献   

3.
Species of the genus Drosophila, commonly known as "fruitflies," are good model systems for research in aging. Drosophila are extremely well-known genetically, developmentally, and otherwise. They are also genetically analogous to mammalian species in most important respects. Previous work with Drosophila has been hampered by inbreeding depression, but more recent work using selection has created Drosophila with postponed aging that is inherited normally. Genetic transformation has also increased Drosophila life spans in some cases. Several biologic approaches have been applied to the analysis of genetically postponed aging in Drosophila: quantitative genetics, organismal physiology, and protein electrophoresis. Ultimately, these different approaches will be integrated into an overall analysis of aging in Drosophila, one that could be valuable for research with other taxa as well.  相似文献   

4.
5.
《Fly》2013,7(5):297-302
A century ago, a little fly with red eyes was first used for genetic studies. That insignificant fly called at that time, Drosophila ampelophila, was going to revolutionize biology while becoming the model we know today as Drosophila melanogaster. Since then, its study has never ceased, but the field of interest has somewhat changed over the century. Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds to not only learn about the latest improvements in our field of interest, but also to appreciate learning another bit of biology. From this biological melting pot a culture very specific to the fly community has emerged. Thus, besides neurobiology, cell biology and development a diversity of other fields of research exist, and they all have their own place in the cultural and historical dimension of the "Drosophila" model. Several communications from these diverse fields of research were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and they are briefly reported here.  相似文献   

6.
Homeobox genes encode important developmental control proteins. The Drosophila fruit fly HOM complex genes are clustered in region 84-89 of chromosome 3. Probably due to large-scale genome duplication events, their human HOX orthologs belong to four paralogous regions. A series of 13 other homeobox genes are also clustered in region 88-94, on the same chromosome of Drosophila. We suggest that they also duplicated during vertebrate evolution and belong to paralogous regions in humans. These regions are on chromosome arms 4p, 5q, 10q, and 2p or 8p. We coined the term "paralogon" to designate paralogous regions in general. We propose to call these genes "meta Hox" genes. Like Hox genes, metaHox genes are present in one cluster in Drosophila and four clusters (metaHox A-D) in humans on the 4p/5q/10q paralogon.  相似文献   

7.
The Drosophila Alk receptor tyrosine kinase (RTK) drives founder cell specification in the developing visceral mesoderm and is crucial for the formation of the fly gut. Activation of Alk occurs in response to the secreted ligand Jelly Belly. No homologues of Jelly Belly are described in vertebrates, therefore we have approached the question of the evolutionary conservation of the Jeb-Alk interaction by asking whether vertebrate ALK is able to function in Drosophila. Here we show that the mouse ALK RTK is unable to rescue a Drosophila Alk mutant, indicating that mouse ALK is unable to recognise and respond to the Drosophila Jeb molecule. Furthermore, the overexpression of a dominant-negative Drosophila Alk transgene is able to block the visceral muscle fusion event, which an identically designed dominant-negative construct for the mouse ALK is not. Using PC12 cells as a model for neurite outgrowth, we show here for the first time that activation of dAlk by Jeb results in neurite extension. However, the mouse Alk receptor is unable to respond in any way to the Drosophila Jeb protein in the PC12 system. In conclusion, we find that the mammalian ALK receptor is unable to respond to the Jeb ligand in vivo or in vitro. These results suggest that either (i) mouse ALK and "mouse Jeb" have co-evolved to the extent that mALK can no longer recognise the Drosophila Jeb ligand or (ii) that the mALK RTK has evolved such that it is no longer activated by a Jeb-like molecule in vertebrates.  相似文献   

8.
HnRNP from nitrogen frozen Drosophila melanogaster embryos were isolated in the presence of EDTA and EGTA cosedimenting in sucrose and density gradients like hnRNP from vertebrates. Four "core" proteins of 23.000, 28.000, 32.000 and 45.000 Da are strongly enriched in these complexes. One could conclude that the basic structural organization of Drosophila melanogaster hnRNP is similar to that described for vertebrates.  相似文献   

9.
Factors and mechanisms controlling lipometabolism homeostasis share a remarkable evolutionary conservation between humans and Drosophila flies. Accordingly, the Drosophila model has been successfully used to understand the pathophysiology of human metabolic diseases such as obesity. Body fat stores in species as different as humans and flies consist of neutral lipids, mainly triacylglycerols. Changes in body fat storage are a diagnostic phenotype of lipometabolism imbalances of genetic or environmental origin. Various methods have been developed to quantify Drosophila body fat storage. The most widely used method adopts a commercial coupled colorimetric assay designed for human serum triacylglycerol quantification, which is based on glycerol content determination after enzymatic conversion of glycerides into glycerol. The coupled colorimetric assay is compatible with large-scale genetic screen approaches and has been successfully applied to characterize central regulators of Drosophila lipometabolism. Recently, the applicability of the coupled colorimetric assay for Drosophila storage fat quantification has been questioned in principle. Here we compare the performance of the coupled colorimetric assay on Drosophila samples with thin layer chromatography, the "gold standard" in storage lipid analysis. Our data show that the presented variant of the coupled colorimetric assay reliably discriminates between lean and fat flies and allows robust, quick and cost-effective quantification of Drosophila body fat stores.  相似文献   

10.
While large populations in the third world are enduring famine, much of the developed world is undergoing an obesity epidemic. In addition to reflecting an unbalanced distribution of food, the "epidemic of overabundance" is ironically leading to a decrease in the health and longevity of the obese and improperly nourished in the first world. International consortia, such as the European Nutrigenomics Organization (NuGO), are increasing our knowledge of nutrientgene interactions and the effects of diet and obesity on human health. In this review, we summarize both previous and ongoing nutrigenomics studies in Drosophila and we explain how these studies can be used to provide insights into molecular mechanisms underlying nutrigenomics in humans. We will discuss how quantitative trait locus (QTL) experiments have identified genes that affect triglyceride levels in Drosophila, and how microarray analyses show that hundreds of genes have altered gene expression under different dietary conditions. Finally, we will discuss ongoing combined microarray-QTL studies, termed "genetical genomics," that promise to identify "master modulatory loci" that regulate global responses of potentially hundreds of genes under different dietary conditions. When "master modulatory loci" are identified in Drosophila, then experiments in mammalian models can be used to determine the relevance of these genes to human nutrition and health.  相似文献   

11.
We screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to conserved amino acid sequences from the five known rat somatostatin receptors. This yielded alignment with a Drosophila genomic clone that contained a DNA sequence coding for a protein, having amino acid sequence identities with the rat galanin receptors. Using PCR with Drosophila cDNA as a template, and oligonucleotide probes coding for the exons of the presumed Drosophila gene, we were able to clone the cDNA for this receptor. The Drosophila receptor has most amino acid sequence identity with the three mammalian galanin receptors (37% identity with the rat galanin receptor type-1, 32% identity with type-2, and 29% identity with type-3). Less sequence identity exists with the mammalian opioid/nociceptin-orphanin FQ receptors (26% identity with the rat micro opioid receptor), and mammalian somatostatin receptors (25% identity with the rat somatostatin receptor type-2). The novel Drosophila receptor gene contains ten introns and eleven exons and is located at the distal end of the X chromosome.  相似文献   

12.
The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various insect allatostatins. This resulted in alignment with a DNA sequence coding for some Drosophila allatostatins (drostatins). Using PCR with oligonucleotide primers directed against the presumed exons of this Drosophila allatostatin gene and subsequent 3'- and 5'-RACE, we were able to clone its cDNA. The Drosophila allatostatin preprohormone contains four amino acid sequences that after processing would give rise to four Drosophila allatostatins: Val-Glu-Arg-Tyr-Ala-Phe-Gly-Leu-NH(2) (drostatin-1), Leu-Pro-Val-Tyr-Asn-Phe-Gly-Leu-NH(2) (drostatin-2), Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) (drostatin-3), and Thr-Thr-Arg-Pro-Gln-Pro-Phe-Asn-Phe-Gly-Leu-NH(2) (drostatin-4). Drostatin-2 is identical to helicostatin-2 (11-18) and drostatin-3 to helicostatin-3, two neurohormones previously isolated from the moth Helicoverpa armigera. Furthermore, drostatin-3 has previously been isolated from Drosophila itself. Drostatins-1 and -4 are novel members of the insect allatostatin neuropeptide family. The Drosophila allatostatin preprohormone gene contains two introns and three exons. The gene is located on the right arm of the third chromosome, position 96A-B. The existence of at least four different Drosophila allatostatins opens the possibility of a differential action of some of these hormones on the two recently cloned Drosophila allatostatin receptors, DAR-1 and -2. This is the first report on an allatostatin preprohormone from Drosophila.  相似文献   

13.
Grishaeva TM  Bogdanov IuF 《Genetika》2000,36(10):1301-1321
By the beginning of 2000, more than 80 genes specifically controlling meiosis and meiotic recombination in Drosophila melanogaster have been described. Meiosis in Drosophila is different from the classical model. In females, these differences concern cytological features of prophase I, which have no principal genetic significance. Drosophila males lack lateral synapsis of chromosomes, recombination and chiasmata, and their chromosomes segregate in meiosis I following the "touch-and-go" principle. Meiotic genes in Drosophila can be classified according to their functions as affecting prerequisites for recombination and crossing over, controlling chromosome segregation in meiosis I separately in males and females and controlling sister-chromatid segregation in meiosis II in both sexes. Some meiotic genes are pleiotropic. There are meiotic genes controlling mitosis, and vice versa. Some genes for DNA repair in somatic cells are also involved in meiosis. Meiotic genes in Drosophila are compared with their counterparts in other organisms.  相似文献   

14.

Background

Systematic, large-scale RNA interference (RNAi) approaches are very valuable to systematically investigate biological processes in cell culture or in tissues of organisms such as Drosophila. A notorious pitfall of all RNAi technologies are potential false positives caused by unspecific knock-down of genes other than the intended target gene. The ultimate proof for RNAi specificity is a rescue by a construct immune to RNAi, typically originating from a related species.

Methodology/Principal Findings

We show that primary sequence divergence in areas targeted by Drosophila melanogaster RNAi hairpins in five non-melanogaster species is sufficient to identify orthologs for 81% of the genes that are predicted to be RNAi refractory. We use clones from a genomic fosmid library of Drosophila pseudoobscura to demonstrate the rescue of RNAi phenotypes in Drosophila melanogaster muscles. Four out of five fosmid clones we tested harbour cross-species functionality for the gene assayed, and three out of the four rescue a RNAi phenotype in Drosophila melanogaster.

Conclusions/Significance

The Drosophila pseudoobscura fosmid library is designed for seamless cross-species transgenesis and can be readily used to demonstrate specificity of RNAi phenotypes in a systematic manner.  相似文献   

15.
We have constructed restriction-site maps of the mtDNAs in 13 species and one subspecies of the Drosophila obscura group. The traditional division of this group into two subgroups (affinis and obscura) does not correspond to the phylogeny of the group, which shows two well- defined clusters (the Nearctic affinis and pseudoobscura subgroups) plus a very heterogeneous set of anciently diverged species (the Palearctic obscura subgroup). The mtDNA of Drosophila exhibits a tendency to evolve toward high A+T values. This leads to a "saturation" effect that (1) begets an apparent decrease in the rate of evolution as the time since the divergence of taxa increases and (2) reduces the value that mtDNA restriction analysis has for the phylogenetic reconstruction of Drosophila species that are not closely related.   相似文献   

16.
We recently proposed that patterns of evolution of non-LTR retrotransposable elements can be used to study patterns of spontaneous mutation. Transposition of non-LTR retrotransposable elements commonly results in creation of 5' truncated, "dead-on-arrival" copies. These inactive copies are effectively pseudogenes and, according to the neutral theory, their molecular evolution ought to reflect rates and patterns of spontaneous mutation. Maximum parsimony can be used to separate the evolution of active lineages of a non-LTR element from the fate of the "dead-on-arrival" insertions and to directly assess the relative frequencies of different types of spontaneous mutations. We applied this approach using a non-LTR element, Helena, in the Drosophila virilis group and have demonstrated a surprisingly high incidence of large deletions and the virtual absence of insertions. Based on these results, we suggested that Drosophila in general may exhibit a high rate of spontaneous large deletions and have hypothesized that such a high rate of DNA loss may help to explain the puzzling dearth of bona fide pseudogenes in Drosophila. We also speculated that variation in the rate of spontaneous deletion may contribute to the divergence of genome size in different taxa by affecting the amount of superfluous "junk" DNA such as, for example, pseudogenes or long introns. In this paper, we extend our analysis to the D. melanogaster subgroup, which last shared a common ancestor with the D. virilis group approximately 40 MYA. In a different region of the same transposable element, Helena, we demonstrate that inactive copies accumulate deletions in species of the D. melanogaster subgroup at a rate very similar to that of the D. virilis group. These results strongly suggest that the high rate of DNA loss is a general feature of Drosophila and not a peculiar property of a particular stretch of DNA in a particular species group.   相似文献   

17.
A novel method for estimating neutral rates and patterns of DNA evolution in Drosophila takes advantage of the propensity of non-LTR retrotransposable elements to create nonfunctional, transpositionally inactive copies as a product of transposition. For many LINE elements, most copies present in a genome at any one time are nonfunctional "dead-on-arrival" (DOA) copies. Because these are off-shoots of active, transpositionally competent "master" lineages, in a gene tree of a LINE element from multiple samples from related species, the DOA lineages are expected to map to the terminal branches and the active lineages to the internal branches, the primary exceptions being when the sample includes DOA copies that are allelic or orthologous. Analysis of nucleotide substitutions and other changes along the terminal branches therefore allows estimation of the fixation process in the DOA copies, which are unconstrained with respect to protein coding; and under selective neutrality, the fixation process estimates the underlying mutational pattern. We have studied the retroelement Helena in Drosophila. An unexpectedly high rate of DNA loss was observed, yielding a half-life of unconstrained DNA sequences approximately 60-fold faster in Drosophila than in mammals. The high rate of DNA loss suggests a straightforward explanation of the seeming paradox that Drosophila has many fewer pseudogenes than found in mammalian species. Differential rates of deletion in different taxa might also contribute to the celebrated C-value paradox of why some closely related organisms can have very different DNA contents. New data presented here rule out the possibility that the transposition process itself is highly mutagenic, hence the observed linear relation between number of deletions and number of nucleotide substitutions is most easily explained by the hypothesis that both types of changes accumulate in unconstrained sequences over time.  相似文献   

18.
19.
20.
Ostrowski S  Dierick HA  Bejsovec A 《Genetics》2002,161(1):171-182
The embryonic cuticle of Drosophila melanogaster is deposited by the epidermal epithelium during stage 16 of development. This tough, waterproof layer is essential for maintaining the structural integrity of the larval body. We have characterized mutations in a set of genes required for proper deposition and/or morphogenesis of the cuticle. Zygotic disruption of any one of these genes results in embryonic lethality. Mutant embryos are hyperactive within the eggshell, resulting in a high proportion reversed within the eggshell (the "retroactive" phenotype), and all show poor cuticle integrity when embryos are mechanically devitellinized. This last property results in embryonic cuticle preparations that appear grossly inflated compared to wild-type cuticles (the "blimp" phenotype). We find that one of these genes, krotzkopf verkehrt (kkv), encodes the Drosophila chitin synthase enzyme and that a closely linked gene, knickkopf (knk), encodes a novel protein that shows genetic interaction with the Drosophila E-cadherin, shotgun. We also demonstrate that two other known mutants, grainy head (grh) and retroactive (rtv), show the blimp phenotype when devitellinized, and we describe a new mutation, called zeppelin (zep), that shows the blimp phenotype but does not produce defects in the head cuticle as the other mutations do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号