首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of sol-gel/organic hybrid composite material based on the cross-linking of natural polymer chitosan with (3-aoryloxypropyl) dimethoxymethylsilane was developed for the fabrication of an amperometric H(2)O(2) biosensor. The composite film was used to immobilize horseradish peroxidase (HRP) on a gold disk electrode. The properties of sol-gel/chitosan and sol-gel/chitosan-HRP films have been carefully characterized by atomic force microscopy and Fourier transform infrared. By using fluorescent label, a protein density on sol-gel/chitosan has been calculated to be 3.14 x 10(12) moleculescm(-2). With the aid of catechol mediator, the biosensor had a fast response of less than 2 s with linear range of 5.0 x 10(-9)-1.0 x 10(-7) mol l(-1) and a detection limit of 2 x 10(-9) mol l(-1). Its current response shows a typical Michaelis-Menten mechanism. The apparent Michaelis-Menten constant K(M)(app) is found to be 1.30 micromol l(-1). The activation energy for enzymatic reaction is calculated to be 8.22 kJ mol(-1). The biosensor retained approximately 75% of its original activity after about 60 days of storage in a phosphate buffer at 4 degrees C.  相似文献   

2.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility.  相似文献   

3.
Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode.  相似文献   

4.
5.
An electrochemical biosensor for determination of hydrogen peroxide (H2O2) was fabricated, based on the electrostatic immobilization of horseradish peroxidase (HRP) with one-dimensional gold nanowires (Au NWs) and TiO2 nanoparticles (nano-TiO2) on a gold electrode. The nano-TiO2 can give a biocompatible microenvironment and compact film, and the Au NWs can provide fast electron transferring rate and greatly add the amount of HRP molecules immobilized on the electrode surface. Au NWs were characterized by ultraviolet–visible spectra and transmission electron microscope. The electrode modification process was probed by cyclic voltammetry and electrochemical impedance spectroscopy. Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. Under optimal conditions, the linear range for the determination of H2O2 was from 2.3 × 10−6 to 2.4 × 10−3 M with a detection limit of 7.0 × 10−7 M (S/N = 3). Moreover, the proposed biosensor showed superior stability and high sensitivity.  相似文献   

6.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

7.
In this study, we report on a promising H(2)O(2) biosensor based on the co-immobilization of horseradish peroxidase (HRP) and chitosan onto Au-modified TiO(2) nanotube arrays. The titania nanotube arrays were directly grown on a Ti substrate using anodic oxidation first; a gold thin film was then uniformly coated onto the TiO(2) nanotube arrays by an argon plasma technique. The morphology and composition of the fabricated Au-modified TiO(2) nanotube arrays were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Cyclic voltammetry and chronoamperometry were used to study and to optimize the performance of the resulting electrochemical biosensor. The effect of pH, applied electrode potential, the presence of the electron-mediator methylene blue, and the anodic oxidation time of the Ti substrate on the electrochemical biosensor has been systemically studied. Our electrochemical measurements show that the Au-modified TiO(2) nanotube arrays provide excellent matrices for the immobilization of HRP and that the optimized electrochemical biosensor exhibits long linearity, a low detection limit, high stability and very good reproducibility for the detection of H(2)O(2). Under the optimized conditions the linearity of the developed biosensor for the detection of H(2)O(2) is observed from 5 x 10(-6) to 4 x 10(-4) moll(-1) with a detection limit of 2 x 10(-6) moll(-1) (based on the S/N=3).  相似文献   

8.
Direct electrochemistry and thermal stability of hemoglobin (Hb) immobilized on a nanometer-sized zirconium dioxide (ZrO2) modified pyrolytic graphite (PG) electrode were studied. The immobilized Hb displayed a couple of stable and well-defined redox peaks with an electron transfer rate constant of (7.90 +/- 0.93)s(-1) and a formal potential of -0.361 V (-0.12 V versus NHE) in 0.1M pH 7.0 PBS. Both nanometer-sized ZrO2 and dimethyl sulfoxide (DMSO) could accelerate the electron transfer between Hb and the electrode. Spectroscopy analysis of the Hb/ZrO2/DMSO film showed that the immobilized Hb could retain its natural structure. This modified electrode showed a high thermal stability up to 74 degrees C and an electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator. The electrocatalytic response showed a linear dependence on the H2O2 concentration ranging from 1.5 to 30.2 microM with a detection limit of 0.14 microM at 3sigma. The apparent Michaelis-Menten constant KMapp for H2O2 sensor was estimated to be (0.31 +/- 0.02) mM, showing a high affinity.  相似文献   

9.
The CAT/PANi/ITO bioelectrode has been prepared as a catalase biosensor and shows response for monitoring not only of H2O2 but also azide. The sensor exhibited an excellent response to the H2O2 and azide. The linear range of H2O2 was 0.064∼1 mM and for azide 0.125∼4 mM, respectively. Catalase biosensor was based on the principle of the measurements as the decrease in the differentiation of oxygen level, which has been caused by the inhibition of catalase in the bioactive layer of the biosensor by azide. The repeatability experiments were done in triplicate. The logarithm response of the biosensor to H2O2 (r2 = 0.99), as well as, for azide (r2 = 0.90) were reported, respectively. The bioelectrode was characterized by CV and AFM. The proposed biosensor would be applied for the determination of H2O2 and azide in various biological samples.  相似文献   

10.
The design and development of a screen printed carbon electrode (SPCE) on a polyvinyl chloride substrate as a disposable sensor is described. Six configurations were designed on silk screen frames. The SPCEs were printed with four inks: silver ink as the conducting track, carbon ink as the working and counter electrodes, silver/silver chloride ink as the reference electrode and insulating ink as the insulator layer. Selection of the best configuration was done by comparing slopes from the calibration plots generated by the cyclic voltammograms at 10, 20 and 30 mM K(3)Fe(CN)(6) for each configuration. The electrodes with similar configurations gave similar slopes. The 5th configuration was the best electrode that gave the highest slope. Modifying the best SPCE configuration for use as a biosensor, horseradish peroxidase (HRP) was selected as a biomaterial bound with gold nanoparticles (AuNP) in the matrix of chitosan (HRP/AuNP/CHIT). Biosensors of HRP/SPCE, HRP/CHIT/SPCE and HRP/AuNP/CHIT/SPCE were used in the amperometric detection of H(2)O(2) in a solution of 0.1M citrate buffer, pH 6.5, by applying a potential of -0.4V at the working electrode. All the biosensors showed an immediate response to H(2)O(2). The effect of HRP/AuNP incorporated with CHIT (HRP/AuNP/CHIT/SPCE) yielded the highest performance. The amperometric response of HRP/AuNP/CHIT/SPCE retained over 95% of the initial current of the 1st day up to 30 days of storage at 4 degrees C. The biosensor showed a linear range of 0.01-11.3mM H(2)O(2), with a detection limit of 0.65 microM H(2)O(2) (S/N=3). The low detection limit, long storage life and wide linear range of this biosensor make it advantageous in many applications, including bioreactors and biosensors.  相似文献   

11.
Nanoscale carbon materials (i.e., fullerenes and nanotubes) are an attractive platform for applications in biotransformations and biosensors. The interesting properties displayed by nanoparticles demand new strategies for the manipulation of these materials on the nanoscale. Controlled modification of their surface with biomolecules is required to fully realize their potential in bionanotechnology. In this work, immobilization of a fullerene derivative with a mutant subtilisin is demonstrated, and the effect of the fullerene on the protein activity is determined. The fullerene-conjugated enzyme had improved catalytic properties in comparison to subtilisin immobilized on nonporous silica. Further, the pH profile of free and fullerene-conjugated subtilisin were almost identical.  相似文献   

12.
A novel enzymatic hydrogen peroxide sensor was successfully fabricated based on the nanocomposites containing of Ag/C nanocables and gold nanoparticles (AuNPs). Ag/C nanocables have been synthesized by a hydrothermal method and then AuNPs were assembled on the surface of Ag/C nanocables. The nanocomposites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The above nanocomposites have satisfactory chemical stability and excellent biocompatibility. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Ag/C/Au nanocomposites at glassy carbon electrode (GCE). The results indicated that the Ag/C/Au nanocomposites exhibited excellent electrocatalytic activity to the reduction of H(2)O(2). It offered a linear range of 6.7×10(-9) to 8.0×10(-6) M, with a detection limit of 2.2×10(-9) M. The apparent Michaelis-Menten constant of the biosensor was 51.7×10(-6) M. These results indicated that Ag/C/Au nanocomposites have potential for constructing of a variety of electrochemical biosensors.  相似文献   

13.
A novel amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on the 2,6-pyridinedicarboxylic acid (PDC) polymer, thionine and nano-Au was successfully fabricated. In this strategy, PDC polymer acted as the matrices to covalently immobilize the thionine, and then hemoglobin was successfully adsorbed on the nano-Au which was electro-deposited on to thionine modified electrode surface. The preparation process of modified electrode was characterized with electrochemical impedance spectroscopy and atomic force microscope. The analytical performance of proposed biosensor toward H2O2 was investigated by cyclic voltammetry and chronoamperometry. The resulted biosensor exhibited fast amperometric response (within 6 s) to H2O2, and linear range was from 9.1 μM to 5.0 mM with the detection limit of 2.6 μM (S/N = 3). The apparent Michaelis–Menten constant (K Mapp) was evaluated to be 3.2 mM. Furthermore, the resulted biosensor showed good stability and reproducibility.  相似文献   

14.
A convenient and effective way for fabricating amperometric hydrogen peroxide (H2O2) biosensor was designed in this paper. First, the polyaniline (PANI) nanofibers membrane with good conductance and high surface area was electropolymerized on a gold electrode surface. Then, Pt nanoparticle (PtNP) was electrochemically deposited on the PANI nanofibers membrane. Finally, the hybrid film of gold nanoparticle, chitosan, and horseradish peroxidase (HRP) was cast onto the modified electrode to form a stable biofunctional film, which was also employed as a protective layer to PtNP. The proposed biosensor exhibited a rapid response to H2O2 with the linear range from 7.0 × 10−6 to 1.4 × 10−2 M and a detection limit of 2.8 × 10−6 M (S/N = 3). The sensitivity of 558 μA mM−1 cm−2 was obtained. The Michaelis–Menten constant, K\textM\textapp K_{\text{M}}^{\text{app}} value was 1.90 mM suggesting a high affinity. Moreover, it displayed a good reproducibility and long-term stability.  相似文献   

15.
A simple and novel titania sol-gel derived optical biosensor coupled with carboxy seminaphthorhodamine-1-dextran (SNARF-1-dextran) as the fluorescent dye was fabricated for the determination of glutamate in water and biological samples. The NADH-dependent glutamate dehydrogenase (GLDH) was trapped in titania sol-gel derived matrix prepared by vapor deposition method. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the surface morphology of the spots. SEM and AFM images showed that the deposition of titania precursor at 27 degrees C for 6.5h was found to be suitable to form transparent titania sol-gel matrix to encapsulate GLDH and fluorescent probe. AFM images showed that the roughness of TiO(2) surface increased from 2.16 nm in the absence of GLDH and SNARF to 37.8 nm after the immobilization. The developed titania biosensor has good analytical performance with water samples. A dynamic range between 0.04 and 10mM with the detection limit of 5.5 microM were observed. The responses to glutamate in biological samples also showed good performances, and the dynamic range and detection limit were 0.02-10mM and 6.7 microM, respectively. High precision with relative standard deviations of 4.2 and 10.7% in water and biological samples, respectively, were also demonstrated. In addition, the biosensor showed a relatively high storage stability over more than 1 month. Results obtained in this study clearly demonstrate that this simple vapor deposition method can be successfully used to form transparent titania sol-gel film for the fabrication of glutamate biosensors that are suitable for optical detection of glutamate in water and biological samples.  相似文献   

16.
Inorganic layered niobates (HCa2Nb3O10) were used as immobilization matrices of hemoglobin (Hb) because of their tunable interlayer spaces, large surface areas and good biocompatibilities. A pair of well-defined, quasi-reversible cycle voltammertric peaks were obtained at the Hb-HCa2Nb3O10 modified pyrolytic graphite electrode, suggesting that the layered niobates facilitate the electron transfer between the proteins and the electrode. Hb-HCa2Nb3O10 modified electrode exhibited electrocatalytic response for monitoring H2O2 with a large linear detection range from 25 microM to 3.0 mM and a relatively high sensitivity of 172 microA mM-1 cm-2. Based on the stabilizing effect of the layered niobates, Hb-HCa2Nb3O10 modified electrode can detect H2O2 in strongly acidic and basic solutions with pH of 1-12, which greatly expands the application fields of biosensors.  相似文献   

17.
For the first time, a very novel and simple immobilization method for fabrication of hydrogen peroxide biosensor was reported in this paper. The biocompatible composite HRP-ZrO(2) thin films were synthesized on gold electrode surface based on electro-deposition zirconia doped with horseradish peroxidase (HRP) by cyclic voltammetry scanning in KCl solution containing ZrO(2) and HRP. The fabricated process of biosensor was characterized by electrochemical impedance spectroscopy (EIS) and the surface topography of the prepared films was imaged by atomic force microscope (AFM). The HRP in HRP-ZrO(2) thin films kept its bioactivity and exhibited excellent electrocatalytical response to the reduction of H(2)O(2). Experimental conditions influencing the biosensor performance such as pH, potential were optimized. The resulting biosensor (HRP-ZrO(2)/Au electrode) showed a linear response to H(2)O(2) over a concentration range from 0.02 to 9.45mM with a detection limit of 2muM based on a signal-to-noise ratio of 3 under optimized conditions. The apparent Michaelis-Menten constant (K(M)(app)) was evaluated to be 8.01mM, which indicated the HRP in HRP-ZrO(2) thin films kept its native bioactivity and had high affinity for H(2)O(2). Moreover, the proposed biosensor showed high sensitivity, good reproducibility and long-term stability. What is more, this immobilization methodology widened biosensor application in biomolecules immobilization and could further develop for other protein and biomolecules immobilization.  相似文献   

18.
A novel hydrogen peroxide biosensor was fabricated for the determination of H2O2. The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H2O2 in the linear range from 2.6 × 10 6 mol/L to 8.8 × 10 3 mol/L with a detection limit of 6.4 × 10 7 mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

19.
A novel hydrogen peroxide biosensor was fabricated for the determination of H(2)O(2). The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H(2)O(2) in the linear range from 2.6 x 10(-6) mol/L to 8.8 x 10(-3) mol/L with a detection limit of 6.4 x 10(-7) mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

20.
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode. The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号