首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

2.
The effects of an aqueous supernatant of haruan (ASH) (Channa striatus) fillet extract on various antinociception receptor system activities were examined using a mouse abdominal-constriction model. Mice that were pretreated with distilled water, s.c., followed 10 min later by administration of 25%, 50%, and 100% concentration ASH, s.c., produced a significant concentration-dependent antinociceptive activity (p < 0.001). Pretreatment with naloxone (0.3, 1.0, and 3.0 mg/kg body mass), 10 min before ASH administration, failed to block the extract antinociception. Pretreatment of the 100% concentration ASH with mecamylamine (5 mg/kg), pindolol (10 mg/kg), and haloperidol (1 mg/kg) also did not cause any significant change in its antinociception. However, pretreatment with atropine (5 mg/kg), bicuculline (10 mg/kg), phenoxybenzamine (10 mg/kg), and methysergide (5 mg/kg) were found to reverse ASH antinociception. Based on the above findings, the ASH is suggested to contain different types of bioactive compounds that act synergistically on muscarinic, GABAA, alpha-adrenergic, and serotonergic receptor systems to produce the observed antinociception.  相似文献   

3.
The aim of the present study was to explore the possible role of kappa/dynorphin system in the development of tolerance to nicotine antinociception in mice. First, we observed that kappa-opioid receptor (KOP-r) participates in the acute spinal antinociception produced by nicotine (3 and 5 mg/kg, s.c.) since the pre-treatment with the selective kappa antagonist nor-binaltorphimine (3 mg/kg, i.p.) attenuated this response in the tail-immersion test but not in the hot-plate test nor in locomotor responses. Possible changes in the expression of KOP-r were investigated in tolerant mice to nicotine antinociception by using autoradiography of [3H]CI-977 binding. The density of KOP-r decreased in the spinal cord of tolerant mice. In addition, bi-directional cross-tolerance between nicotine (3 and 5 mg/kg, s.c.) and the selective kappa agonist U50,488H (10 mg/kg, s.c.) was found in the tail-immersion test. Recent evidences indicate that an up-regulation of dynorphin levels in the spinal cord and subsequent activation of NMDA receptors participate in the development of tolerance to opioid and cannabinoid antinociception. In this study, dynorphin content in the lumbar spinal cord was similar in control and nicotine tolerant mice. Furthermore, the administration of the NMDA antagonist MK-801 (0.03 and 0.01 mg/kg, i.p.) before each daily nicotine injection did not modify the development of nicotine tolerance. In summary, these data indicate that KOP-r is directly involved in the development of tolerance to nicotine antinociception by a mechanism independent from dynorphin and NMDA receptors.  相似文献   

4.
S Gupta  S Pasha  Y K Gupta  D K Bhardwaj 《Peptides》1999,20(4):471-478
A synthetic chimeric peptide of Met-enkephalin and FMRFamide (YGGFMKKKFMRFa), based on MERF was synthesized. This peptide was tested for possible antinociceptive effects using the tail flick test in mice. The effect of the chimeric peptide on morphine antinociception and development of tolerance to the antinociceptive action of morphine was also investigated. The chimeric peptide produced significant, dose-dependent antinociception (40, 60 and 90 mg/kg) in the tail flick test. Pretreatment with naloxone (5 mg/kg, IP) significantly attenuated the antinociceptive effect induced by the chimeric peptide (90 mg/kg, IP), indicating involvement of an opioidergic mechanism. In combination experiments with morphine, the antinociceptive dose of the chimeric peptide (60 mg/kg, IP) potentiated morphine (7 mg/kg, IP) antinociception. A low dose of the chimeric peptide (10 mg/kg, IP), that did not produce significant antinociception on its own, also potentiated morphine antinociception. In the tolerance studies, male albino mice received twice daily injections of morphine (20 mg/kg, IP) followed by either saline (0.1 ml) or chimeric peptide (80 mg/kg, IP) for a period of 4 days. A control group received twice daily injections of saline (0.1 ml) for the same period. When tested on Day 5, tolerance to antinociceptive action of morphine (15 mg/kg, IP) was evidenced by decreased response in chronic morphine plus saline treated mice compared to control group. Concurrent administration of chimeric peptide (80 mg/kg, IP) with morphine significantly attenuated the development of tolerance to the antinociceptive action of morphine. The preliminary results of this study demonstrate that peripherally administered chimeric peptide can produce dose dependent, naloxone reversible, antinociception; potentiate morphine antinociception and attenuate morphine tolerance, indicating a possible role of these type of amphiactive sequences in antinociception and its modulation. These chimeric peptides may also prove to be useful tools for further ascertaining the role of FMRFa family of peptides in mechanisms leading to opiate tolerance and dependence.  相似文献   

5.
Immunophilins are abundantly present in the brain as compared to the immune system. Immunophilin-binding agents like FK506 are known to inactivate neuronal nitric oxide synthase (nNOS) by inhibiting calcineurin and decrease the production of nitric oxide. Nitric oxide is involved in the mediation of nociception at the spinal level. In the present study, the effect of FK506 on the tail flick response in mice and the possible involvement of NO-L-arginine pathway in this paradigm was evaluated. FK506 (0.5, 1 and 3 mg/kg, ip) produced a significant antinociception in the tail flick test. Nitric oxide synthase (NOS) inhibitor L-NAME significantly and dose dependently (10-40 mg/kg, ip) potentiated the FK506 (0.5 mg/kg)-induced antinociception. On the other hand, NOS substrate L-arginine (100, 200 and 400 mg/kg) inhibited the FK506-induced antinociception in a dose-dependent manner. Concomitant administration of L-NAME (20 and 40 mg/kg) with L-arginine (200 mg/kg) blocked the inhibition exerted by L-arginine on the FK506-induced antinociception. Thus, it was concluded that NO- L-arginine pathway may be involved in the FK506-induced antinociception in tail flick test.  相似文献   

6.
The leaf essential oil from Croton sonderianus (EOCS) was evaluated for antinociceptive activity in mice using chemical and thermal models of nociception. Given orally, the essential oil at doses of 50, 100 and 200 mg/kg produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid and subplantar formalin or capsaicin injections. However, it evidenced no efficacy against thermal nociception in hot-plate test. More prominent inhibition of acetic acid-induced writhing and capsaicin-induced hind-paw licking responses was observed at 100 and 200 mg/kg of EOCS. At similar doses, the paw licking behavior in formalin test was more potently suppressed during the late phase (20-25 min, inflammatory) than in early phase (0-5 min, neurogenic). The EOCS-induced antinociception in both capsaicin and formalin tests was insensitive to naloxone (1 mg/kg, s.c.), but was significantly antagonized by glibenclamide (2 mg/kg, i.p.). In mice, the essential oil (100 and 200 mg/kg) neither significantly enhanced the pentobarbital-sleeping time nor impaired the motor performance in rota-rod test, indicating that the observed antinociception is unlikely due to sedation or motor abnormality. These results suggest that EOCS produces antinociception possibly involving glibenclamide-sensitive KATP+ channels, which merit further studies on its efficacy in more specific models of hyperalgesia and neuropathic pain.  相似文献   

7.
To determine if different subtypes of mu-opioid receptors were involved in antinociception induced by endomorphin-1 and endomorphin-2, the effect of pretreatment with various mu-opioid receptor antagonists beta-funaltrexamine, naloxonazine and 3-methylnaltrexone on the inhibition of the paw-withdrawal induced by endomorphin-1 and endomorphin-2 given intracerebroventricularly (i.c.v.) were studied in ddY male mice. The inhibition of the paw-withdrawal induced by i.c.v. administration of endomorphin-1, endomorphin-2 or DAMGO was completely blocked by the pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine (40 mg/kg), indicating that the antinociception induced by all these peptides are mediated by the stimulation of mu-opioid receptors. However, naloxonazine, a mu1-opioid receptor antagonist pretreated s.c. for 24h was more effective in blocking the antinociception induced by endomorphin-2, than by endomorphin-1 or DAMGO given i.c.v. Pretreatment with a selective morphine-6 beta-glucuronide blocker 3-methylnaltrexone 0.25mg/kg given s.c. for 25 min or co-administration of 3-methylnaltrexone 2.5 ng given i.c.v. effectively attenuated the antinociception induced by endomorphin-2 given i.c.v. and co-administration of 3-methylnaltrexone shifted the dose-response curves for endomorphin-2 induced antinociception to the right by 4-fold. The administration of 3-methylnaltrexone did not affect the antinociception induced by endomorphin-1 or DAMGO given i.c.v. Our results indicate that the antinociception induced by endomorphin-2 is mediated by the stimulation of subtypes of mu-opioid receptor, which is different from that of mu-opioid receptor subtype stimulation by endomorphin-1 and DAMGO.  相似文献   

8.
This study investigates the antinociception caused by i.p. and p.o. administration of ether fraction and the triterpene identified as urs-12-ene-3beta-16beta-diol, known as Brein, isolated from Protium kleinii in several models of nociception in mice. The systemic administration of ether fraction (0.3 to 10 mg/kg, i.p. or 3 to 60 mg/kg, p.o.) caused a dose-related antinociception when assessed against acetic acid-induced writhing, with mean ID50 values of 1.2 and 16.4 mg/kg, respectively. The ether fraction (5 to 60 mg/kg, i.p. or 30 to 300 mg/kg, p.o.) also produced dose-related inhibition of both phases of formalin induced licking. The mean ID50s values for the early phase were > 60.0 and 62.1 mg/kg, while for the late phase they were 15.4 and 60.0 mg/kg, respectively, given by i.p. and p.o. routes. The ether fraction (3 to 30 mg/kg, i.p. or 10 to 100 mg/kg, p.o.) produced significant inhibition of the neurogenic nociception caused by topical injection of capsaicin, with mean ID50 values of 6.2 and 16.0 mg/kg, respectively. Given orally (1 to 30 mg/kg) the ether fraction produced graded and pronounced inhibition of glutamate-induced hyperalgesia in mice with a mean ID50 value of 15.2 mg/kg. In contrast, the ether fraction failed to produce antinociception when assessed in the thermal model of pain, the tail flick and hot plate tests. The antinociception caused by the ether fraction, in contrast to that of morphine, was not reversed by naloxone when assessed in the formalin-induced licking. The ether fraction did not affect motor coordination or the core body temperature in mices. The triterpene Brein isolated from P. kleinii, given by i.p. route (10 to 100 mg/kg) produced dose-related inhibition of both phases of formalin induced-licking, with mean ID50s values of 15.3 and 20.6 for the early and the late phases, respectively. These data show that the active principle(s) present in the ether fraction from the resin of P. kleinii elicited pronounced antinociception when assessed by i.p. or p.o routes, against both inflammatory and neurogenic nociception. Such effects seem, at least in part, to be related to the presence of the triterpene Brein in the extract. The mechanisms responsible for the antinociceptive action are at this moment not completely understood, but the involvement of the opioid pathway seems unlikely.  相似文献   

9.
S G Holtzman 《Life sciences》1987,40(4):381-389
Twice daily injection of caffeine (30 mg/kg) for 3-1/2 days shifted the caffeine stimulus generalization curve to the right by 3-fold in rats trained to discriminate saline from 30 mg/kg of caffeine, and by 4-fold in rats trained to discriminate saline from 10 mg/kg of caffeine. The latter group was also tested for cross-tolerance with methylphenidate, a drug that generalizes completely with caffeine. Twice daily injection of caffeine (30 mg/kg) for 3-1/2 days increased the ED50 of methylphenidate for caffeine-appropriate responding from 1.5 to 5.5 mg/kg. Conversely, injections of methylphenidate (3.0 mg/kg) increased the ED50 of caffeine from 5.2 to 15 mg/kg. The development of symmetrical cross-tolerance to the discriminative effects of caffeine and to the caffeine-like discriminative effects of methylphenidate supports previous observations suggesting commonalities in the cellular bases of the stimulus properties of these drugs.  相似文献   

10.
We evaluated the effects of pretreatment with clorgyline, an irreversible monoamine oxidase (MAO)-A inhibitor, on morphine-induced hyperlocomotion and antinociception. A single administration of morphine (30 mg/kg, i.p.) to male ICR mice induced a hyperlocomotion. ANOVA analysis revealed the statistical significance of the morphine effect on horizontal locomotion and of the clorgyline pretreatment × morphine interaction effect, but not of the effect of clorgyline pretreatment. The initial (5 min after challenge) phase of morphine actions vs. saline challenge appeared as if morphine had a strong inhibitory effect on locomotor activity in combination with different doses of clorgyline. The mice administered with morphine in combination of clorgyline (1 and 10 mg/kg) did not show any stereotypic behaviors. Clorgyline at a dose of 0.1 mg/kg but not other doses tested significantly potentiated morphine-induced antinociception evaluated by tail flick but not hot plate test. During the measurements of locomotor activity and antinociception, clorgyline at doses of 1 and 10 mg/kg significantly inhibited monoamine metabolism through MAO. These results suggest that clorgyline showed an inhibitory effect on morphine-induced hyperlocomotion, but not antinociception, through MAO inhibition. There is not a possibility that clorgyline pretreatment enhanced morphine action on motor activity, resulting in the abnormal behavior from hyperlocomotion to stereotypic movements.  相似文献   

11.
The effect of methamphetamine on morphine analgesia (tail-flick assay) was studied in non-tolerant mice and in mice made acutely tolerant to morphine following a single injection of 100 mg/kg morphine. The analgesic potency of morphine was increased in non-tolerant and tolerant mice to the same extent by 3.2 mg/kg methamphetamine (3.3 and 4.4 fold increases, respectively). In contrast, the ED50's for morphine analgesia and naloxone-precipitated jumping in mice pretreated with either 100 mg/kg morphine or both morphine and 3.2 mg/kg methamphetamine were not significantly different, indicating that methamphetamine had no effect on the development of acute morphine tolerance and dependence. Although methamphetamine had no effect on the development of acute tolerance to morphine, 4-day pretreatment with methamphetamine produced cross-tolerance to morphine analgesia. However, cross-tolerance to morphine was not accompanied by enchanced sensitivity to naloxone.  相似文献   

12.
The intracerebro-ventricular administration of human β-Endorphin (β-EP, 0.1–3 μg/rat) or D-alanine2 methionine enkephalinamide (D-ala, 0.3–30 μg/rat) caused a dose dependent reduction in the urine volume. The oliguria was associated with a decrease in the concentration of Na+ and K+ in the urine of rats previously hydrated by oral administration with 25 ml/kg tap water plus 50 ml/kg 0.5% NaCl. On a molar basis, β-EP proved to be about 5–7 times more potent than D-ala. The effects caused by the peptides were antagonized by the simultaneous intraperitoneal administration of 1 mg/kg naloxone. In rats treated chronically with morphine, no cross-tolerance was demonstrated to the antidiuretic effect of β-EP, but clear cross-tolerance was evident to the changes in urine electrolytes induced by β-EP. Results suggest that morphine and the opiate peptides share a similar mechanism of action.  相似文献   

13.
Roxindole, a DA D2 receptor agonist (2-16 mg/kg) produced dose-dependent increase in percentage antinociception. The effect which was blocked by DA D2 antagonist (-)sulpiride (50 mg/kg) and 5-HT1A receptor antagonist (-) pindolol (5 mg/kg). Roxindole (4 and 8 mg/kg) reversed both naloxone (20 mg/kg)-induced hyperalgesia and reserpine (2 mg/kg)-induced hyperalgesia. This reversal was sensitive to blockade by both (-)sulpiride (50 mg/kg) and (-) pindolol (5 mg/kg). The present study suggests that roxindole-induced antinociception is mediated by postsynaptic DA D2 and 5-HT1A receptors.  相似文献   

14.
L.J. King  K.H. Minnema  C. Cash 《Life sciences》1977,21(10):1465-1473
Morphine sulphate (4 mg/kg to 32 mg/kg) produced a dose-dependent decrease in brain malate as antinociception increased. Decreased brain malate persisted 72 hours after implantation of morphine pellets by which time mice had become tolerant to antinociception. This finding suggests that malate decrease, unlike changes of other metabolites in other studies, might not be simply a result of general metabolic changes. Malate change as well as antinociception was prevented by prior injection of naloxone (3.0 mg/kg) or naltrexone (0.6 mg/kg) in acute experiments. Malate decrease in pelleted mice was no longer present if withdrawal was produced by naloxone or naltrexone in mice implanted with morphine pellets for 72 hours. Brain P-creatine was elevated in all mice implanted with morphine pellets even after withdrawal, thus, apparently, representing a more generalized effect than malate change.  相似文献   

15.
E T Knych  R M Eisenberg 《Life sciences》1980,26(18):1489-1496
The effect of the serotonin reuptake inhibitor, fluoxetine, and the serotonin antagonist, metergoline, on the rise in plasma corticosterone induced by amphetamine was studied in the conscious, unrestrained rat. Fluoxetine (2.5 mg/kg) did not affect plasma corticosterone. However, this dose of fluoxetine when administered two hours prior to amphetamine (0.1 or 0.5 mg/kg) significantly potentiated the amphetamine-induced rise in plasma corticosterone. Fluoxetine had no effect on the response induced by the highest dose of amphetamine (1.0 mg/kg) utilized in the study. In contrast, metergoline produced a dose-dependent increase in plasma corticosterone over the range 0.1 – 5.0 mg/kg. This response reached maximum 30 minutes after drug administration and had a duration of approximately 120 minutes. Pretreatment of animals with metergoline (5.0 mg/kg) three hours before the administration of amphetamine (1.0 mg/kg) resulted in a significant decrease in the corticosterone rise induced by amphetamine. Lower doses of metergoline were ineffective in reducing the amphetamine-induced response. These observations support the hypothesis that the amphetamine-induced rise in plasma corticosterone is due, in part, to stimulation of serotonergic neurons.  相似文献   

16.
Antinociceptive effect of the antimigraine drug sumatriptan (5-HT1A agonist) was studied against acetic acid-induced writhing in mice. Sumatriptan produced the effect in a dose-dependent manner (1, 5, 10 and 20 mg/kg, s.c.). Naloxone (1 mg/kg i.p.) an opiate antagonist failed to reverse sumatriptan-induced antinociception. Cholinomimetic physostigmine (0.05 mg/kg, i.p.) potentiated and the muscarinic antagonist atropine (5 mg/kg, i.p.) blocked the antinociceptive effect of sumatriptan, respectively. The antinociceptive effect of sumatriptan was compared with an another 5-HT agonist (5-HT1A) buspirone which also produced antinociception. Like sumatriptan-analgesia, the buspirone response was also potentiated by physostigmine in atropine sensitive way. Further, buspirone potentiated the analgesic effect of sumatriptan. These observations suggest that 5-HT1A agonists produce antinociception possibly by modulating central cholinergic activity.  相似文献   

17.
Jesse CR  Savegnago L  Nogueira CW 《Life sciences》2007,81(25-26):1694-1702
The present study examined the antinociceptive effects induced by 2,3-bis(mesitylseleno)propenol, a bis-selenide alkene derivate, given orally, in chemical models of pain in rats and mice. Selenide administered orally (p.o.) into the rats caused antinociception against the first and second phases of the formalin test, with mean ID(50) values of 28.17 and 39.68 mg/kg, respectively. The antinociceptive effect caused by selenide (50 mg/kg, p.o.) on the formalin test was reversed by pretreatment with N(G)-L-nitro-arginine methyl ester (L-NAME, a nitric oxide (NO) synthase inhibitor), methylene blue (a non-specific NO/guanylyl cyclase inhibitor) and glibenclamide (an ATP-sensitive K(+) channel inhibitor), but not by atropine (a muscarinic antagonist). Given orally selenide in mice produced an inhibition of glutamate-, histamine- and compound 48/80-induced nociception with mean ID(50) values of 27.58, 36.18 and 44.53 mg/kg, respectively. Moreover, oral treatment with selenide in mice decreased licking -- induced by serotonin (mean ID(50) value of >50 mg/kg). The data show that selenide exerts pronounced systemic antinociception in chemical (formalin, glutamate, histamine, compound 48/80 and serotonin-induced pain) models of nociception. Taken together, these results suggest that the antinociceptive effect of selenide on the formalin test involves the participation of nitric oxide/cyclic GMP/K(+) channel pathways in rats.  相似文献   

18.
Flavone, dextrose and long swim stress exhibited antinociception. Degree of antinociception was greater with long swim stress as compared to flavone or dextrose. Combination of these treatments resulted in potentiation of antinociception. Naloxone (opioid antagonist; 5 mg/kg i.p.) antagonised flavone or long stress induced antinociception showing opioid medicated mechanism, however, failed to reverse the potentiated antinociceptive component recorded in long stressed animals which received flavone and dextrose. Antinociceptive activity of flavone, dextrose and long swim stress which was documented by acetic acid assay has been confirmed in the present study. Role for opioid system in this action has been demonstrated. Therefore, formalin test can also be considered as an useful assay procedure for testing flavonoids. However, like acetic acid assay this assay procedure also has the limitation that it is unable to detect minor changes in the degree of antinociception produced by physiological interventions such as long swim and dextrose.  相似文献   

19.
Intrathecal (IT) administration of vasopressin produces antinociception, scratching behavior, and motor suppression. The present experiments characterized these effects with regards to the following: 1) VP receptor specificity, 2) possible involvement of endogenous opiates, 3) possible involvement of seizure activity, and 4) whether the antinociception is due to direct actions of VP at the spinal cord. These studies showed that IT administration of a V1-specific vasopressin antagonist completely blocked the antinociception, scratching behavior, and motor suppression produced by 25 ng IT vasopressin. Furthermore, IT administration of the vasopressin metabolite, [pGlu4,Cyt6]AVP(4-9), produced none of the effects produced by vasopressin. Systemic administration of the opiate antagonists naloxone (1 mg/kg IP) and naltrexone (10 mg/kg IP) had no significant effect on the antinociception produced by IT vasopressin, whereas naltrexone potentiated the scratching behavior. Neither the IT vasopressin-induced antinociception nor scratching behavior was affected by pretreatment with the anticonvulsant sodium valproate. In addition, IT vasopressin inhibited the tail flick reflex in rats with transected spinal cords, demonstrating direct spinal effects of vasopressin. In conclusion, IT administration of vasopressin produces antinociception, scratching behavior, and motor suppression via activation of VP-specific receptors in the spinal cord.  相似文献   

20.
Quercetin, a bioflavonoid (100-300 mg/kg) produced dose dependent increase in tail-flick latency, the analgesic effect being sensitive to reversal by naloxone (1 mg/kg). Prior treatment with haloperidol (1 mg/kg), D1/D2 receptor antagonist haloperidol, sulpiride (50 mg/kg), a selective D2 receptor antagonist, yohimbine (5 mg/kg), a alpha2-adrenoreceptor antagonist but not by SCH 23390 a, selective D1 receptor antagonist blocked this response. Apomorphine (1 mg/kg) a mixed D1/D2 dopamine receptor agonist, and quinpirole (0.5 mg/kg), a selective D2 receptor agonist also produced antinociception, that was reversed by haloperidol (1 mg/kg), sulpiride (50 mg/kg), but not by yohimbine (5 mg/kg). The antinociceptive action of quercetin (200 mg/kg) was potentiated by D2 agonist quinpirole (0.2 mg/kg). Dopamine D1 receptor agonist SKF38393 (10 and 15 mg/kg) failed to alter the antinociceptive effect of quercetin (200 mg/kg). Quercetin (200 mg/kg) reversed reserpine (2 mg/kg-4 hr) induced hyperalgesia, which was reversed by sulpiride but not by yohimbine. Thus, a role of dopamine D2 and alpha2-adrenoreceptors is postulated in the antinociceptive action of quercetin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号