首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Leaf hairs (trichomes) of Arabidopsis thaliana are a model system for studying cell development, differentiation and cell cycle regulation. To exploit this model system with ultimate spatial resolution we applied single cell sampling, thus avoiding the averaging effect induced by complex tissue mixtures. In particular, we analysed gene expression profiles of two selected stages of the developing trichome: trichome initial cells and mature trichomes, as well as pavement cells. Ten single cells per sample were collected by glass microcapillaries and used for the generation of radioactive probes for subsequent hybridization to nylon filters representing approximately 8000 genes of A. thaliana. Functional categorization of genes transcribed in trichome initials, mature trichomes and pavement cells demonstrated involvement of these surface cells in the stress response. In silico promoter analysis of genes preferentially expressed in trichome initials revealed enrichment in MYB-binding sites and presence of elements involved in hormonal, metal, sulphur response and cell cycle regulation. Three candidate genes preferentially expressed in trichome initials were selected for further analysis: At3g16980 (putative RNA polymerase II), At5g15230 (GASA4) and At4g27260 (GH3.5, WES1). Promoter:GUS studies confirmed expression of the putative RNA polymerase II and the gibberellin responsive GASA4 in trichome initials and partially in mature trichomes. Functional implication of the three selected candidates in trichome development and hence in cell cycle regulation in A. thaliana is discussed. We suggest that these genes are involved in differentiation and initiation of endocycling during trichome development.  相似文献   

4.
5.
6.
Zhou Z  An L  Sun L  Zhu S  Xi W  Broun P  Yu H  Gan Y 《Plant physiology》2011,157(2):673-682
Arabidopsis (Arabidopsis thaliana) trichome development is a model system for studying cell development, cell differentiation, and the cell cycle. Our previous studies have shown that the GLABROUS INFLORESCENCE STEMS (GIS) family genes, GIS, GIS2, and ZINC FINGER PROTEIN8 (ZFP8), control shoot maturation and epidermal cell fate by integrating gibberellins (GAs) and cytokinin signaling in Arabidopsis. Here, we show that a new C2H2 zinc finger protein, ZFP5, plays an important role in controlling trichome cell development through GA signaling. Overexpression of ZFP5 results in the formation of ectopic trichomes on carpels and other inflorescence organs. zfp5 loss-of-function mutants exhibit a reduced number of trichomes on sepals, cauline leaves, paraclades, and main inflorescence stems in comparison with wild-type plants. More importantly, it is found that ZFP5 mediates the regulation of trichome initiation by GAs. These results are consistent with ZFP5 expression patterns and the regional influence of GA on trichome initiation. The molecular analyses suggest that ZFP5 functions upstream of GIS, GIS2, ZFP8, and the key trichome initiation regulators GLABROUS1 (GL1) and GL3. Using a steroid-inducible activation of ZFP5 and chromatin immunoprecipitation experiments, we further demonstrate that ZFP8 is the direct target of ZFP5 in controlling epidermal cell differentiation.  相似文献   

7.
利用光学显微镜、扫描电镜和透射电镜技术,观察了龙葵“四叶一心”期时叶片及茎表皮的腺毛的种类、分布,探究了不同类型腺毛的起源、生长、成熟、分泌、衰老等发育过程的细胞学特征;通过组织化学染色和荧光显微技术,观察了龙葵腺毛成分、分布,为龙葵的进一步开发利用提供参考。结果表明:(1)龙葵腺毛分为单细胞头腺毛和多细胞头腺毛两类,前者主要分布于茎表面和叶上下表皮,后者主要分布于茎表面的单细胞头腺毛之间、叶脉及叶边缘;(2)龙葵腺毛发育起始于表皮细胞突起,单细胞头腺毛行顶端生长,具1-4个柄细胞,四种类型;多细胞头腺毛可再分为一层、两层与三层多细胞头腺毛,另具三种特殊类型;(3)龙葵成熟腺毛具分泌能力,通过皮下空间的物质积累导致腺毛头细胞表面形成突起、包块、破口,最终释放分泌物;而头细胞与柄细胞随即皱缩、衰老。(4)超微结构显示,腺毛头细胞中内质网与高尔基体极为丰富,合成代谢及分泌活动活跃,产生大量包裹嗜锇物质的囊泡,囊泡与细胞壁融合,进而将嗜锇物质转移至细胞壁并积累,随后储存在角质层下的皮下空间直至分泌释放;(5)组织化学染色结果表明,腺毛含有萜类、生物碱、脂类、蛋白质、酚类和多糖。头细胞中主要含有萜类、生物碱、脂类、蛋白质、酚类和中性多糖;柄细胞中主要含有萜类、生物碱、脂类。  相似文献   

8.
Kolb D  Müller M 《Annals of botany》2004,94(4):515-526
BACKGROUND AND AIMS: In the present study, the differences between glandular and non-glandular trichomes, the secretory process and the method of secretion were studied. Previous studies on leaves of Styrian oil pumpkin (Cucurbia pepo var. styriaca) plants have shown that four morphologically and ontogenetically independent glandular and non-glandular trichome types and one bristle hair type can be distinguished. The four types of trichomes can be categorized into three glandular trichome types: type I, a short-stalked trichome with four head cells including a 'middle-cell', two stalk cells and one basal cell; type II, a long-stalked trichome with two head cells, a 'neck-cell' region and a long stalk area; type IV, a 'stipitate-capitate' trichome with a mesophyll cell basement, a short stalk and a multicellular head; type III, a non-glandular 'columnar-digit' trichome, which consists of two head cells continuous with three-celled stalk, and the basal cell. METHODS: The histochemical studies (the main classes of metabolite in secreted material of glandular trichomes) were conducted in fresh and fixed hand sections, using the following tests: Sudan black B, Nile blue A, osmium tetroxide, neutral red, Naturstoffreagent A, FSA (fuchsin-safranin-astra blue), NADI (naphthol + dimethylparaphenylenediamine) and ruthenium red. Each suggested differences in the intercalations during the ontogenetical development of each trichome during the development stage. KEY RESULTS: The histochemical reactions revealed the main components of the materials secreted by all types of trichomes, which include lipids, flavones and terpenes and the different cell wall compositions. Glandular secretions were observed during environmental scanning electron microscopy (ESEM) and the trichomes compared with those seen by conventional scanning electron microscopy (CSEM). CONCLUSIONS: Scanning electron microscopy and histochemical analysis demonstrated that each of the trichomes studied produced and released secretory products in a characteristic way.  相似文献   

9.
Plasmodesmata are plasma membrane‐lined channels through which cytoplasmic molecules move from cell‐to‐cell in plants. Most plasmodesmata contain a desmotubule, a central tube of endoplasmic reticulum (ER), that connects the ER of adjacent cells. Here we demonstrate that molecules of up to 10.4 kDa in size can move between the ER lumen of neighbouring leaf trichome or epidermal cells via the desmotubule lumen. Fluorescent molecules of up to 10 kDa, microinjected into the ER of Nicotiana trichome cells, consistently moved into the ER and nuclei of neighbouring trichome cells. This movement occurred more rapidly than movement via the cytoplasmic pathway. A fluorescent 3‐kDa dextran microinjected into the ER of a basal trichome cell moved into the ER and nuclei of epidermal cells across a barrier to cytoplasmic movement. We constructed a 10.4‐kDa recombinant ER‐lumenal reporter protein (LRP) from a fragment of the endogenous ER‐lumenal binding protein AtBIP1. Following transient expression of the LRP in the ER of Tradescantia leaf epidermal cells, it often moved into the nuclear envelopes of neighbouring cells. However, green fluorescent protein targeted to the ER lumen (ER‐GFP) did not move from cell to cell. We propose that the ER lumen of plant cells is continuous with that of their neighbours, and allows movement of small ER‐lumenal molecules between cells.  相似文献   

10.
CAPRICE (CPC) encodes a small protein with an R3 MYB motif and promotes root hair cell differentiation in Arabidopsis thaliana. Three additional CPC-like MYB genes, TRY (TRIPTYCHON), ETC1 (ENHANCER OF TRY AND CPC 1) and ETC2 (ENHANCER OF TRY AND CPC 2) act in a redundant manner with CPC in trichome and root hair patterning. In this study, we identified an additional homolog, CPC-LIKE MYB 3 (CPL3), which has high sequence similarity to CPC, TRY, ETC1 and ETC2. Overexpression of CPL3 results in the suppression of trichomes and overproduction of root hairs, as has been observed for CPC, TRY, ETC1 and ETC2. Morphological studies with double, triple and quadruple homolog mutants indicate that the CPL3 gene cooperatively regulates epidermal cell differentiation with other CPC homologs. Promoter-GUS analyses indicate that CPL3 is specifically expressed in leaf epidermal cells, including stomate guard cells. Notably, the CPL3 gene has pleiotropic effects on flowering development, epidermal cell size and trichome branching through the regulation of endoreduplication.  相似文献   

11.
12.
13.
《Annals of botany》1999,83(1):87-92
This paper reports the results of a study of the morphology and development of glandular trichomes in leaves ofCalceolaria adscendensLidl. using light and electron microscopy. Secretory trichomes started as outgrowths of epidermal cells; subsequent divisions gave rise to trichomes made up of a basal epidermal cell, a stalk cell and a two-celled secretory head. Ultrastructural characteristics of trichome cells were typical of terpene-producing structures. Previous phytochemical studies had revealed thatC. adscendensproduces diterpenes. Comparison withC. volckmanni,which produces triterpenes, and has trichomes with eight-celled secretory heads, suggests that there could be a relationship between the type of glandular trichome and the class of terpene produced. Further work is needed to test the hypothesis and to develop trichome characters as taxonomic tools.  相似文献   

14.
Trichome morphogenesis in Arabidopsis   总被引:2,自引:0,他引:2  
Trichomes (plant hairs) in Arabidopsis thaliana are large non-secreting epidermal cells with a characteristic three-dimensional architecture. Because trichomes are easily accessible to a combination of genetic, cell biological and molecular methods they have become an ideal model system to study various aspects of plant cell morphogenesis. In this review we will summarize recent progress in the understanding of trichome morphogenesis.  相似文献   

15.
Vegetative anatomical features are poorly known in the South American genus Chrysolaena. In this study, leaves and stems of six Chrysolaena species were described and compared morphologically and anatomically using diaphanization, microtome serial sectioning and scanning electron microscopy. The species differed in leaf epidermis, type of stomata, shape of anticlinal walls of epidermal cells, trichome density, and presence or absence in stems of small air spaces in the cortical parenchyma and of druse‐shaped oxalate crystals. Furthermore, glandular trichomes and three types of non‐glandular trichomes with different number of basal cells were identified on leaves and stems. Collectively, these features proved instrumental to discriminate among the six studied species, suggesting that leaves and stems of Chrysolaena can represent a source for taxonomically useful characters. We also discuss anatomical features in relation to the environmental conditions in the species’ habitats.  相似文献   

16.
17.
利用激光扫描共聚焦显微镜研究植物细胞发育形态学变化   总被引:2,自引:0,他引:2  
通过激光扫描共聚焦显微镜,利用不同种类(波长)的激光研究植物细胞发育形态学变化。结果表明,利用紫外激光(351 nm)扫描可以清楚地观察到拟南芥叶片表皮细胞的形态及其变化,在已分化的叶片表皮上可观察到包括“铺垫”表皮细胞(epidermal pavement cells)、气孔保卫细胞(guard cell)、气孔伴胞(subsidiarycells)、表皮毛细胞(trichomes)和表皮毛的足细胞(socket cells)等多种形态不同的细胞种类;利用蓝光激光(488nm)辅助曙红浅染,可清晰地显示出拟南芥根生长区内部的各种原始细胞,包括静止区(quiescent center)细胞、皮层/内皮层原始细胞(cortex/endodermal initial cell)、表皮/根冠原始细胞(epidermal/root cap initial cell)和中柱/根冠原始细胞(columella/root cap initial cell)等。利用双光子激光(800 nm)连续扫描30 s可以诱发叶绿体产生自发荧光,并可观察到叶绿体在叶肉细胞中的运动轨迹。结果说明激光扫描共聚焦显微镜在植物细胞形态及发育研究上具有独特的功能。  相似文献   

18.
19.
9种榆科植物叶表皮结构特征研究   总被引:2,自引:0,他引:2  
利用叶表皮离析法观察了榆科6属9种植物叶片的表皮结构。结果表明,榆科植物叶片气孔器仅分布在远轴面,不规则型,不具副卫细胞;叶片毛状体主要有腺毛和非腺毛两种类型,腺毛由基细胞、柄细胞和膨大的顶细胞构成,非腺毛均由单细胞发育而来,基部具或不具钟乳体,多数非腺毛顶部发育成长锥状,少数非腺毛顶部极短呈喙状。根据气孔器的类型和分布位置,尤其是表皮毛的基本结构和发育类型等特征,不支持将广义榆科分为两个独立科的观点。但榆科这9种植物叶表皮特征具有属间或种间差异,有一定的分类学价值。  相似文献   

20.
Jasmonates, including jasmonic acid and its derivatives such as methyl jasmonate (MeJA), are plant growth substances that control various responses. Jasmonates regulate leaf trichome density in dicotyledonous plants, but their effects on the trichome density of monocotyledonous plants, such as those in the Poaceae, remain unclear. In the present study we examined the effects of exogenous MeJA on the trichome density of Rhodes grass, which has three kinds of trichomes: macrohairs, salt glands, and prickles. Exogenous MeJA significantly increased the densities of macrohairs and salt glands on the adaxial and abaxial leaf surfaces and those of prickles on the adaxial leaf surface. Because exogenous MeJA significantly reduced the leaf area, we calculated the number of trichomes per 1000 epidermal cells to eliminate the effects of reduced leaf area. Exogenous MeJA significantly increased the number of macrohairs per 1000 epidermal cells on both adaxial and abaxial leaf surfaces, but it significantly decreased the number of salt glands per 1000 epidermal cells on both surfaces. Exogenous MeJA had no significant effects on the number of prickles per 1000 epidermal cells on either of the leaf surfaces. These results indicate that exogenous MeJA alters the trichome density by affecting leaf area and trichome initiation, and the effects of exogenous MeJA on trichome initiation differ among the various trichome types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号