首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Epstein RH  Bolle A  Steinberg CM 《Genetics》2012,190(3):831-832
We have isolated a large number of mutants of bacteriophage T4D that are unable to form plaques on strain B of Escherichia coli, but are able to grow (nearly) normally on some other strains of E. coli, in particular strain CR63. These mutants, designated amber (am), have been characterized by complementation tests, by genetic crosses, and by their response to chemical mutagens. It is concluded that a particular subclass of base substitution mutations may give rise to amber mutants and that such mutants occur in many genes, which are widely distributed over the T4 genome.  相似文献   

2.
Orias, E. (University of California, Santa Barbara), and T. K. Gartner. Suppression of amber and ochre rII mutants of bacteriophage T4 by streptomycin. J. Bacteriol. 91:2210-2215. 1966.-Streptomycin-induced suppression of amber and ochre rII mutants of phage T4 was studied in a streptomycin-sensitive strain of Escherichia coli and four nearly isogenic streptomycin-resistant derivatives of this strain, in the presence and in the absence of an ochre suppressor. Most of the 12 rII mutants tested were suppressed by streptomycin in the streptomycin-sensitive su(-) strain. This streptomycin-induced suppression in the su(-) strain was eliminated by the independent action of at least two of the four nonidentical mutations to streptomycin resistance. In two of the su(+)str-r strains, streptomycin markedly augmented the suppression caused by the ochre suppressor. In those su(-)str-r hosts in which significant streptomycin-induced suppression could be measured, the amber mutants were more suppressible than the ochre mutants.  相似文献   

3.
Intragenic recombination of bacteriophage T4B amber mutants in early genes 30, 32, 42, 43, 44, 56 and in late gene 7 in su- cells of Escherichia coli B was studied. The frequency of recombination under such conditions was increased in genes 30, 43 and 7, but it was lowered in genes 46 and 44, and was completely inhibited in genes 32, 42 and 56. The level of stimulation or inhibition of recombination frequencies in early genes was gene-specific and did not depend either on the distances between amber mutations, or on progeny phage maturation delay. On the other hand, the level of recombination stimulation in the late gene 7 was greatly influenced by the distances between amber mutations tested. Wild type alleles arising in su- cells during recombination proved to be functionally active, and their activity caused the increase in progeny phage yield and in a partial removal of phage maturation delay.  相似文献   

4.
Studies of Mutations in T4 Control Genes 33 and 55   总被引:2,自引:0,他引:2       下载免费PDF全文
H. Robert Horvitz 《Genetics》1975,79(3):349-360
  相似文献   

5.
Isolation of nonsense suppressor mutants in Pseudomonas.   总被引:31,自引:13,他引:18       下载免费PDF全文
A strain of Escherichia coli harboring the drug resistance plasmid RP1 was treated with the mutagen N-methyl-N-nitro-N-nitro-N-nitrosoguanidine, and mutants were isolated in which ampicillin resistance had been lost due to an amber mutation in the plasmid. One of these mutants was again treated, and a strain was isolated in which tetracycline resistance was also lost due to an amber mutation in the plasmid. The plasmid containing amber mutations in the genes amp and tet was named pLM2. This plasmid could be transferred to strains of Pseudomonas aeruginosa, P. phaseolicola, and P. pseudoalcaligenes. Mutants resistant to ampicillin and tetracycline could not be obtained from P. phaseolicola carrying pLM2. However, strains of E. coli, P. aeruginosa, and P. pseudoalcaligenes carrying the plasmid did produce mutants simultaneously resistant to both antibiotics. All of the mutants of E. coli had developed nonsense suppressors since they became phenotypically lac+, although harboring a lac amber mutation, and formed plaques with amber mutants of phages PRR1 and PRD1 that attack organisms carrying RP1. Approximately 20% of the resistant mutants of P. aeruginosa and P. pseudoalcaligenes were sensitive to the amber mutant of PRD1. These mutants were of variable stability and grew somewhat more slowly than their parent strains. One of the suppressor mutants of P. pseudoalcaligenes, designated ERA(pLM2)S4, was used for the isolation of nonsense mutants of bacteriophage PHA6, a virus having a segmented genome of double-stranded ribonucleic acid and an envelope of lipids and proteins.  相似文献   

6.
Approximately 500 vitamin B6 auxotrophs were isolated from 18 independent cultures of Escherichia coli strain CR63. None grew in minimal medium supplemented with 2'-hydroxypyridoxine. Eighteen auxotrophs which had arisen independently were further characterized. All of them were defective in vitamin B6 synthesis rather than in an aminotransferase involved in vitamin B6 utilization. Two different phenotypes were recognized: 'Oxidase' mutants which grew only when supplied with pyridoxal or pyridoxal 5'-phosphate and 'Pre Pn' mutants which would also grow with pyridoxine or pyridoxine phosphate. "Oxidase' mutants were confined to a single linkage group, but data from interrupted mating experiments established that 'Pre Pn' mutants fall into two linkage groups which are possibly identical to pdxA and pdxB. All mutations in the in the pdxA region were allelic rather than located in two closely linked genes.  相似文献   

7.
Characterization of Op3, a lysis-defective mutant of bacteriophage f2.   总被引:12,自引:0,他引:12  
P Model  R E Webster  N D Zinder 《Cell》1979,18(2):235-246
We have isolated a conditional lethal mutant of bacteriophage 12 which makes plaques only on E. coli strains carrying a UGA suppressor. It grows normally in nonsuppressing hosts but does not lyse such strains. The mutation complements with amber mutations in each of the three known phage cistrons. These observations lead us to postulate the existence of a fourth gene in the RNA phage.  相似文献   

8.
Bacteriophage T5 is not confined by the restriction systems of the second type EcoRII and EcoRV. Bacteriophage T5 DNA is not modified by EcoRII and EcoRV methylases in vivo. The sites of recognition for restriction endonuclease EcoRV are mapped at 24.4; 57.6; 68.5; 70.2% of T5 DNA, while the sites at 5.1; 7.6% are recognized by EcoRII, the sites at 5.75; 6.0 and 6.5% are recognized by HpaI in FST. A high activity of restriction endonucleases EcoRI and EcoRV is demonstrated in crude extracts of E. coli B834 (RI) and E. coli B834 (RV) cells infected by bacteriophage T5. The simultaneous infection of E. coli B834 (RI) or E. coli B834 (RV) cells by the amber mutants of bacteriophage T5 and the suppressing phage lambda NM761 does not result in the protection of lambda DNA by the T5 anti-restriction mechanism. The presented data support the hypothesis that the anti-restriction mechanism of bacteriophage T5 is based on prevention of T5 DNA contacts with restriction enzymes by a specific phage protein.  相似文献   

9.
The growth properties of twelve different amber (am) mutants of bacteriophage T4 gene 43 (DNA polymerase) were examined by using nonpermissive (su(-)) as well as permissive (su(+)) Escherichia coli hosts. It was found that most of these mutants were measurably suppressed in su(-) hosts by translational ambiguity (misreading of codons during protein synthesis). The ability of these mutants to grow in response to this form of weak suppression probably means that the T4 gene 43 DNA polymerase can be effective in supporting productive DNA replication when it is supplied in small amounts. By similar criteria, studies with other phage mutants suggested that the products of T4 genes 62 (uncharacterized), 44 (uncharacterized), 42 (dCMP-hydroxymethylase), and 56 (dCTPase) are also effective in small amounts. Some T4 gene products, such as the product of gene 41 (uncharacterized), seem to be partially dispensable for phage growth since am mutants of such genes do propagate, although weakly, in streptomycin-resistant su(-) hosts which appear to have lost the capacity to suppress am mutations by ambiguity.  相似文献   

10.
A Salmonella typhimurium strain was given the amber mutation hisC527 by transduction, made galactose-negative by mutation, then infected with the F'-1-gal factor. Of 107 spontaneous and mutagen-induced histidine-independent mutants tested, 3 proved to result from suppressor mutations within the F' factor. The mutant F' factors, when transferred to S. typhimurium and E. coli auxotrophs, suppressed amber and ochre but not UGA or missense mutants, and are inferred to carry ochre suppressor genes. Attempts to isolate an F' amber suppressor mutant were unsuccessful. A suppressor F' factor was transferred to 14 rough mutants which had been isolated from LT2 hisC527 (amber) by selection for resistance to phage P22.c2. One rough mutant was partly suppressed, as shown by its acquisition of O agglutinability and by alterations in its phage resistance pattern. Phage P22h grown on the suppressed mutant contransduced its rf. gene with cysE(+) and with pyrE(+), and the affected locus is inferred to be rfaL. Both the original and the mutant F' factors conferred resistance to the rough-specific phage Br60, which is therefore "female-specific."  相似文献   

11.
Mutants of bacteriophage G4 were isolated and characterized, and their mutations were mapped. They constitute six different genes, namely, A, B, E, F, G, and H. The functional relationship with bacteriophage phi X174 was determined by complementation experiments using amber mutants of phi X and amber mutants of G4. Bacteriophage phi X was able to use the products of G4 genes E, F, G, and H. In bacteriophage G4, however, only the phi X gene H product was functional.  相似文献   

12.
L J Reha-Krantz 《Gene》1985,38(1-3):275-276
The Escherichia coli JM105 strain was constructed as a sup0 strain to facilitate the cloning of selected recombinants (Yanisch-Perron et al., 1985). In our work with bacteriophage T4, we observed that several T4 am mutants could grow on JM105. To characterize the suppressor activity of JM105, we tested the growth of several T4 am mutants on a variety of E. coli suppressor-containing strains.  相似文献   

13.
Summary A fragment of Escherichia coli bacteriophage T4D DNA, containing 6.1 Kbp which included the six genes (genes 25, 26, 51, 27, 28 and 29) coding for the tail baseplate central plug has been partially characterized. This DNA fragment was obtained originally by Wilson et al. (1977) by the action of the restriction enzyme EcoRI on a modified form of T4 DNA and was inserted in the pBR322 plasmid and then incorporated into an E. coli K12 strain called RRI. This plasmid containing the phage DNA fragment has now been reisolated and screened for cleavage sites for various restriction endonucleases. Restriction enzymes Bgl 11 and Xbal each attacked one restriction site and the enzyme Hpa 1 attacked two restriction sites on this fragment. The combined digestion of the hybrid plasmid containing the T4 EcoRI DNA fragment conjugated to the pBR322 plasmid with one of these enzymes plus Bam H1 restriction enzyme resulted in the localization of the restriction site for Bgl 11, Xba 1 and Hpa 1. Escherichia coli strain B cells were transformed with this hybrid plasmid and found to have some unexpected properties. E. coli B cells, which are normally restrictive for T4 amber mutants and for T4 temperature sensitive mutants (at 44°) after transformation, were permissive for 25am, 26am and 26Ts, 51am, and 51Ts, 27Ts, and 28Ts T4 mutants. Extracts from the transformed E. coli cells were found in complementation experiments to contain the gene 29 product, as well as the gene 26 product, the gene 51 product, and the gene 27 product. The complementation experiments and the permissiveness of the transformed E. coli B cells to the various conditional lethal mutants clearly showed that the six T4 genes were producing all six gene products in these transformed cells. However, these cells were not permissive for T4 amber mutants in genes 27, 28, and 29. The transformed E. coli B cells, as compared to untransformed cells, were found to have altered outer cell walls which made them highly labile to osmotic shock and to an increased rate of killing by wild type T4 and all T4 amber mutants except for T4 am29. The change in cell walls of the transformed cells has been found to be due to the T4 baseplate genes on the hybrid plasmid, since E. coli B transformed by the pBR322 plasmid alone does not show the increase in osmotic sensitivity.  相似文献   

14.
In search of a model for the production of 'spontaneous' mutations induced by DNA damage produced during normal metabolism, 19 amino acids were tested for mutagenicity in Escherichia coli K-12 uvrB. Cystine, and, to a lesser extent, arginine and threonine were found to be antimutagenic; only phenylalanine was found to be mutagenic. At 2 mM, phenylalanine induced mutants at 1.5-2-fold above background [lacZ53(amber)----Lac+, rifampicin resistance (missense), and bacteriophage T6 resistance]. Tyrosine and, to a lesser extent, tryptophan (each at 2 mM) inhibited the mutagenicity of phenylalanine. Phenylalanine mutagenesis was detected in the uvrB strain, but not in the wild-type, uvrB umuC or uvrB lexA strains. Thus, phenylalanine seems to cause the production of excisable lesions ('UV-like'?) in DNA, which, if not excised, can induce mutations via error-prone DNA repair.  相似文献   

15.
Vegetative recombination of bacteriophage Mu-1 in Escherichia coli   总被引:7,自引:0,他引:7  
Summary Twenty-two amber mutants of the thermoinducible mutator phage Mu-c4ts were isolated. These mutants fall into 11 complementation groups. The data obtained by crossing these amber mutants suggest that bacteriophage Mu-1 has a linear vegetative linkage map. In a recombination deficient host of the RecA type the recombination frequencies are extremely low, indicating that Mu-1, in contrast to many other E. coli phages, is dependent on the recombination system of its host. With as a helper phage, recombination between Mu phages in a RecA host is restored to about 1/3 of the frequency in a Rec+ host. Although Mu-1 is able to integrate efficiently into the chromosome of a RecA strain, it seems that its integration system does not contribute to vegetative recombination.The survival of UV-irradiated Mu-1 was measured on different radiation sensitive mutants of E. coli. The survival on a UvrB strain was very low as compared to the wild-type; the survival on a RecA strain was almost the same as on the wild-type.Research Fellow from the Laboratory of Genetics, State University, Leiden, The Netherlands.  相似文献   

16.
17.
During the genetic mapping of a mutation in the pheS gene which confers temperature sensitivity on a strain of Escherichia coli K-12, an extragenic suppressor was discovered which restores ability to grow at the restrictive temperature. The suppressor, which has been named supQ, is cotransduced by bacteriophage P1 with the purE marker. SupQ does not suppress a number of amber or ochre mutations. SupQ(-) is carried by the prototrophic Hfr Hayes strain AB259, and the presence of the supQ(-) allele impairs the growth of this strain at 42 C.  相似文献   

18.
Sigma S (sigma(s)) encoded by rpoS in Escherichia coli is a stationary phase specific sigma subunit of the RNA polymerase holoenzyme. Widespread among the E. coli K12 strains is an amber mutation that prematurely terminates sigma(s). These rpoSAm mutants would be expected to show no sigma(s) activity. However, suppressor free rpoSAm mutants retain an intermediate catalase activity, a sigma S controlled function. By analyzing the sequence of the rpoS gene we hypothesize that a 277 amino acids long delta1-53 sigma(s) of about 30 kDa can be translated from an internal secondary translation initiation region (STIR, AGGGAGN11GUG) that is located downstream of the amber codon. By cloning this rpoSAm gene, following the expression, function, and N-terminal sequence of this mutant protein, we report the presence of a functional internal STIR in E. coli rpoS, from where a truncated but nevertheless functional form of sigma(s) can be synthesized.  相似文献   

19.
1. Two mutants of Escherichia coli K 12 were isolated which, although able to grow on glucose, are unable to grow with succinate or d-lactate as the sole source of carbon. 2. Genetic mapping of these mutants showed that they both contain a mutation in a gene (designated uncA) mapping at about minute 73.5 on the E. coli chromosome. 3. The uncA(-) alleles were transferred by bacteriophage-mediated transduction into another strain of E. coli and the transductants compared with the parent strain to determine the nature of the biochemical lesion in the mutants. 4. The mutants gave low aerobic growth yields when grown on limiting concentrations of glucose, but oxidase activities in membranes from both the mutants and the normal strain were similar. 5. Measurement of P/O ratios with d-lactate as substrate indicated that a mutation in the uncA gene causes uncoupling of phosphorylation associated with electron transport. 6. Determination of the Mg(2+),Ca(2+)-stimulated adenosine triphosphatase activities in the mutant and normal strains indicated that the uncA gene is probably the structural gene for Mg(2+),Ca(2+)-stimulated adenosine triphosphatase. 7. Mg(2+),Ca(2+)-stimulated adenosine triphosphatase therefore appears to be essential for oxidative phosphorylation in E. coli.  相似文献   

20.
We studied the reactivity of 66 anti-Escherichia coli B/r porin monoclonal antibodies (MAbs) with several E. coli and Salmonella typhimurium strains. Western immunoblots showed complete immunological cross-reactivity between E. coli B/r and K-12; among 34 MAbs which recognized porin in immunoblots of denatured outer membranes of E. coli B/r, all reacted with OmpF in denatured outer membranes of E. coli K-12. Extensive reactivity, although less than that for strain B/r (31 of 34 MAbs), occurred for porin from a wild-type isolate, E. coli O8:K27. Only one of the MAbs reacted with porin in denatured outer membranes of S. typhimurium. Even with immunochemical amplification of the Western immunoblot technique, only six MAbs recognized S. typhimurium porin (OmpD), demonstrating that there is significant immunological divergence between the porins of these species. Antibody binding to the bacterial surface, which was analyzed by cytofluorimetry, was strongly influenced by lipopolysaccharide (LPS) structure. An intact O antigen, as in E. coli O8:K27, blocked adsorption of all 20 MAbs in the test panel. rfa+ E. coli K-12, without an O antigen but with an intact LPS core, bound seven MAbs. When assayed against a series of rfa E. coli K-12 mutants, the number of MAbs that recognized porin surface epitopes increased sequentially as the LPS core became shorter. A total of 17 MAbs bound porin in a deep rough rfaD strain. Similar results were obtained with S. typhimurium. None of the anti-E. coli B/r porin MAbs adsorbed to a smooth strain, but three antibodies recognized porin on deep rough (rfaF, rfaE) mutants. These data define six distinct porin surface epitopes that are shielded by LPS from reaction with antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号