首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

2.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase alpha was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

3.
W M Bonner  R S Wu  H T Panusz  C Muneses 《Biochemistry》1988,27(17):6542-6550
Procedures are presented which permit the identification and analysis of cellular histone that is not bound to chromatin. This histone, called soluble histone, could be distinguished from that bound to chromatin by the state of H4 modification and the lack of H2A ubiquitination. Changes in the levels of newly synthesized soluble histone were analyzed with respect to the balance between histone and DNA synthesis in hamster ovary cells. Pulse-chase protocols suggested that the chase of newly synthesized histone from the soluble fraction into chromatin may have two kinetic components with half-depletion times of about 1 and 40 min. When protein synthesis was inhibited, the pulse-chase kinetics of newly synthesized histone from the solubl fraction into chromatin were not significantly altered from those of the control. However, in contrast to the control, when protein synthesis was inhibited, DNA synthesis was also inhibited with kinetics similar to those of the chase of newly synthesized histone from the soluble fraction. There was a rapid decrease in the rate of DNA synthesis with a half-deceleration time of 1 min down to about 30% of the control rate, followed by a slower decrease with an approximate half-deceleration time of 40 min. When DNA synthesis was inhibited, newly synthesized histone accumulated in the soluble fraction, but H2A and H2B continued to complex with chromatin at a significant rate. Soluble histone in G1 cells showed the same differential partitioning of H4/H3 and H2A/H2B between the soluble and chromatin-bound fractions as was found in cycling cells with inhibited DNA synthesis. These results support a unified model of reciprocal regulatory mechanisms between histone and DNA synthesis in the assembly of chromatin.  相似文献   

4.
1. Adult rat hepatocytes were isolated by collagenase perfusion and were maintained in monolayer culture for 24h. 2. Choline metabolism and phosphatidylcholine biosynthesis were studied in these cells by performing pulse-chase studies at physiological concentrations (1-40 microM) of (Me-3H)-labelled or unlabelled choline in the culture medium. 3. During the 15 min pulse incubation, choline entering the cells was rapidly phosphorylated to phosphocholine or oxidized to betaine. Low concentrations of choline in the medium decreased the relative amount of choline oxidized. 4. During the 3 h chase period, the radioactivity in the phosphocholine pool was transferred to phosphatidylcholine. Very little radioactivity was associated with CDP-choline. These results provide good evidence that the rate-limiting step for phosphatidylcholine biosynthesis in these cultured hepatocytes is the conversion of phosphocholine into CDP-choline. Similar results were obtained for all concentrations of choline in the culture medium. 5. Cellular concentrations of phosphocholine were unaffected by the concentration of choline (1-40 microM) in the medium. 6. The majority of the label associated with betaine was secreted into the culture medium during the chase incubation. 7. From the pulse-chase studies, and the cellular phosphocholine concentrations, it was possible to estimate the rate of phosphatidylcholine biosynthesis (2.2, 2.8, 3.1 and 3.7 nmol/min per g wet weight of cells cultured in 1, 5, 10 and 40 microM-choline respectively for up to 4.25 h).  相似文献   

5.
Cells of an euploid strain of the Chinese hamster synchronized in the G1 phase were microirradiated in the nucleus with a laser UV microbeam (λ = 257 nm) and pulse-labelled with [3H]thymidine. In autoradiographs of cells fixed immediately after the pulse unscheduled DNA synthesis (UDS) was found restricted to the microirradiated part of the nucleus. The rate of UDS varied with the UV energy applied and the post-irradiation incubation time. In other experiments chromosome preparations were established after an additional chase and a subsequent growth period. In 28 mitotic cells autoradiographic label was found concentrated on a few chromosomes which lay adjacent to each other in one part of the metaphase plate. The distribution of label on the chromosomes could clearly be distinguished from patterns which originate from semi-conservative DNA synthesis within S phase. The label on chromosomes of microirradiated cells thus represents UDS. Our findings support the following ideas on the arrangement of interphase chromosomes: (1) Decondensed interphase chromosomes may occupy rather compact territories. (2) Chromosomes do not necessarily exhibit a close and permanent association with their respective homologues.  相似文献   

6.
Insulin inhibition of apolipoprotein B (apoB) secretion by primary cultures of rat hepatocytes was investigated in pulse-chase experiments using [35S]methionine as label. Radioactivity incorporation into apoBH and apoBL, the higher and lower molecular weight forms, was assessed after immunoprecipitation of detergent-solubilized cells and media and separation of the apoB forms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Hepatocyte monolayers were incubated for 12-14 h in medium with and without an inhibitory concentration of insulin. Cells were then incubated for 10 min with label, and, after differing periods of chase with unlabeled methionine, cellular medium and media labeled apoB were analyzed; greater than 90% of labeled apoB was present in cells at 10 and 20 min after pulse, and labeled apoB did not appear in the medium until 40 min of chase. Insulin treatment inhibited the incorporation of label into total apoB by 48%, into apoBH by 62%, and into apoBL by 40% relative to other cellular proteins. Insulin treatment favored the more rapid disappearance of labeled cellular apoBH with an intra-cellular retention half-time of 50 min (initial half-life of decay, t1/2 = 25 min) compared with 85 min in control (t1/2 = 60 min). Intracellular retention half-times of labeled apoBL were similar in control and insulin-treated hepatocytes and ranged from 80 to 100 min. After 180 min of chase, 44% of labeled apoBL in control and 32% in insulin-treated hepatocytes remained cell associated. Recovery studies indicated that insulin stimulated the degradation of 45 and 27% of newly synthesized apoBH and apoBL, respectively. When hepatocyte monolayers were continuously labeled with [35S]methionine and then incubated in chase medium with and without insulin, labeled apoBH was secreted rapidly, reaching a plateau by 1 h of chase, whereas labeled apoBL was secreted linearly over 3-5 h of chase. Insulin inhibited the secretion of immunoassayable apoB but not labeled apoB. Results demonstrate that 1) insulin inhibits synthesis of apoB from [35S]methionine, 2) insulin stimulates degradation of freshly translated apoB favoring apoBH over apoBL, and 3) an intracellular pool of apoB, primarily apoBL, exists that is largely unaffected by insulin. Overall, insulin action in primary hepatocyte cultures reduces the secretion of freshly synthesized apoB and favors secretion of preformed apoB enriched in apoBL.  相似文献   

7.
The use of tritiated leucine as a marker for protein synthesis and of tritiated glucosamine as a marker for polysaccharide/glycoprotein synthesis, is described. Adult worms were pulse-labelled by incubation in medium containing the substrate. Labelled worms were then incubated in chase medium, without labelled substrate, for varying lengths of time before fixation. The distribution of label which had been incorporated into macromolecules in the worm tissues, was examined by light and electron microscope autoradiography. It was estimated that the tegument and tegument cell bodies were the source of 67--80%, and the gut epithelium of 20--30%, of exportable leucine-containing protein. Conversely, the gut epithelium was the source of 72%, and the tegument cells 28%, of exportable glucosamine-containing polysaccharide. The specific activity of labelled protein reached a peak in the tegument cytoplasm after 1.5 h of chase incubation. Half of the labelled protein was secreted into the worm's environment by 3 h of chase incubation. The half-life of secretory protein in gut cells appears to be around 2 h. Labelled protein disappears from the gut lumen relatively rapidly but labelled polysaccharide remains in the lumen at high specific activity for at least 24 h. The major carbohydrate labelled may be the glycocalyx on the luminal surface of the gut epithelial cells. The results suggest that the bulk of worm secretions have a rapid turnover with a half-life of a few hours. Against this background of rapid mass secretion a slower process of membrane turnover would be difficult to detect and quantitatively small.  相似文献   

8.
The incorporation of 3H-thymidine into the nuclear DNA of differentiated, non-dividing collenchyma tissue in cut shoots of Lycopersicon esculentum was studied autoradiographically. When the fed shoots were transferred for up to 168 h to a non-radioactive solution, a significant loss of label was observed following a chase for 48 h. Thereafter, the only further change in the labelling pattern was demonstrated by a 168 h chase. When fed shoots were alternatively re-rooted and sampled over a longer chase period, there was a consistent decline in the mean grain count per nucleus until 14 weeks after re-rooting. A final sampling at 32 weeks revealed that almost all of the labelled DNA had been lost or turned over from this tissue.  相似文献   

9.
The effects of ovary holding time and temperature on granulosa cell apoptosis, oocyte chromatin configuration and cumulus morphology were investigated through a series of experiments. Three experiments were performed to determine the effect of ovary holding time and temperature on granulosa cell apoptosis. Ovaries were held (1) at 20, 30 or 35-37 degrees C for up to 2h, (2) at 30 degrees C for 0-1, 1-2, 2-3, 3-4, 4-6 or 6-10h, and (3) granulosa cells were held for 0, 1, 2, 3, 5, 12 or 24h in M199 with Hank's salts at room temperature (suboptimal incubation). Granulosa cell DNA was analysed by ethidium bromide staining or 3'-end labelling. Two experiments were performed to determine the effect of ovary holding time and temperature on oocyte chromatin configuration. Ovaries were held (1) at 20, 30 or 35-37 degrees C for up to 3h and (2) at 20-37 degrees C for 0-1, 1-2, 2-3, 3-4, 4-6, 6-8 or 8-12h. The oocytes were stained with Hoechst stain 33258 and the chromatin configuration was evaluated. Two experiments were performed to determine the effect of ovary holding time and temperature on cumulus oophorus morphology. Ovaries were held at (1) 20-30 or 35-37 degrees C for up to 2h and (2) for 0-2, 2-4, 4-6, and 6-10h at 35-37 degrees C. The cumulus oocyte complex (COC) were retrieved and the cumulus morphology was evaluated. There was no difference in proportion of follicles with non-apoptotic granulosa cells in the two groups below body temperature (20 and 30 degrees C), but more follicles had apoptotic granulosa cells when the ovaries were held at 35-37 degrees C (P < 0.001). Holding ovaries at 30 degrees C for more than 3h increased the proportion of follicles with apoptotic granulosa cells (P < 0.01). When follicles with non-apoptotic granulosa cells were incubated at room temperature, there was no granulosa cell apoptosis in any of the follicles within the first 3h, but at 5h apoptosis was present in the granulosa cells of 22% of the follicles, and 78% of the follicles contained apoptotic granulosa cells at 24h (P < 0.001). The temperature at which the ovaries were held did not influence oocyte chromatin, although there was a tendency towards more condensed chromatin configurations in the groups below body temperature. More denuded and expanded COCs were present in the lower temperature group (P < 0.001). Oocyte chromatin configuration changed after 6h of holding (P < 0.001), and numbers of compact COCs decreased after 2h (P < 0.05). The present studies suggest that equine follicles should be held for no more than 3h at 20-30 degrees C if granulosa cell apoptosis is to be avoided. To avoid changes in cumulus oophorus morphology, ovaries should be held at 35-37 degrees C and for less than 2h before processing, and to avoid oocyte chromatin configuration changes, ovaries should be stored for less than 6h. When ovaries are to be used in oocyte maturation studies, and assuming that (1) CC is the chromatin configuration of choice for oocyte maturation, (2) that presence of granulosa cell apoptosis promotes maturation of the oocyte and (3) that expanded cumulus oocytes are preferable, the present data suggests that ovaries should be stored for 4-6h before oocyte retrieval.  相似文献   

10.
To quantify the kinetics of the plasma membrane flow into lysosomes, we covalently labelled at 4 degrees C the pericellular membrane of rat fibroblasts and followed label redistribution to the lysosomal membrane using purified lysosomal preparations. The polypeptides were, either labelled with 125I by the lactoperoxidase procedure, or conjugated to [3H]peroxidase using bisdiazobenzidine as a bifunctional reagent. Both labels were initially bound to plasma membrane, as indicated by their equilibrium density in sucrose or Percoll gradients and their displacement by digitonin, as well as by electron microscopy. Upon cell incubation at 37 degrees C, both covalent labels were lost from cells with diphasic kinetics: a minor component (35% of cell-associated labels) was rapidly released (half-life less than 1 h), and most label (65%) was released slowly (half-life was 20 h for incorporated 125I and 27 h for 3H). Immediately after labelling up to 30 h after incubation at 37 degrees C, the patterns of 125I-polypeptides quantified by autoradiography after SDS-PAGE were indistinguishable, indicating no preferential turnover for the major plasma membrane polypeptides. The redistribution of both labels to lysosomes was next quantified by cell fractionation. At equilibrium (between 6 and 25 h of cell incubation) 2-4% of cell-associated 125I label was recovered with the purified lysosomal membranes. By contrast, when 3H-labelled cells were incubated for 16 h, most of the label codistributed with lysosomes. However, only 6% of cell-associated 3H was bound to lysosomal membrane. These results indicate that in cultured rat fibroblasts, a minor fraction of plasma membrane polypeptides becomes associated with the lysosomal membrane and is constantly equilibrated by membrane traffic.  相似文献   

11.
12.
Effects of cycloheximide on chromatin biosynthesis.   总被引:10,自引:0,他引:10  
In the presence of sufficient cycloheximide, puromycin or NaCl to quantitatively inhibit protein synthesis in HeLa cells, thymidine incorporation continues at 20% of control rates for 60 to 90 minutes, after which incorporation gradually ceases. Both DNA and protein synthesis revert to control rates in about five minutes after removal of cycloheximide.DNA synthesis in the presence of cycloheximide appears to be a continuation of the replicative process by several criteria. The persistent DNA synthesis in the presence of cycloheximide is abolished by hydroxyurea, which does not inhibit repair synthesis, while ethidium bromide, an inhibitor of mitochondrial DNA synthesis, is without effect. Nuclear DNA is not nicked during incubation in cycloheximide. Low molecular weight Okazaki fragments (4 to 5 S) are both synthesized and processed to high molecular weight DNA in cells treated with cycloheximide. Replication forks, identified in alkaline CsCl gradients by incorporation of bromodeoxyuridine as a density marker just before the addition of cycloheximide, are selectively labeled with radioactive thymidine during DNA synthesis.In the presence of cycloheximide the maturation of DNA intermediates into high molecular weight DNA is defective. All size classes of DNA fragments, normally present during progression of low to high molecular weight DNA, are demonstrable in cells preincubated in cycloheximide for prolonged periods. However, 21 S fragments, intermediate in size between Okazaki pieces and mature, high molecular weight DNA, accumulate in cells treated with cycloheximide, demonstrating a defect in maturation of the 21 S intermediates into high molecular weight DNA. After removal of the cycloheximide, the 21 S DNA fragments are processed to high molecular weight DNA at a significantly impaired rate, requiring about three hours for completion of chain growth as compared to 40 to 60 minutes in controls. The slowed growth of DNA fragments synthesized in the presence of cycloheximide following drug removal is not due to persisting effects of cyeloheximide since DNA synthesis immediately following removal of the drug has chain growth rates similar to that of controls.Pools of chromatin proteins exist in HeLa cells, as demonstrated by a brief, labeled amino acid pulse followed by a chase with cycloheximide. The specific activity of chromatin proteins increases significantly during 60 minutes of cycloheximide inhibition. Histone f2a1 accumulates preferentially during this chase period, suggesting that a supply of this highly conserved histone might be requisite to continued replication.Comparison of chromatin synthesized during cycloheximide treatment with pulse-labeled control chromatin has provided insight into the mechanism of assembly of proteins and DNA into the nucleoprotein complex. The DNA of ch-chromatin2 is more susceptible to nuclease digestion than control chromatin, suggesting that it is deficient in protein content. Upon reversal of cycloheximide inhibition, the recovery of nuclease digestibility of ch-chromatin to control values takes two to three hours, a time similar to that required for conversion of the corresponding 21 S chDNA fragments to high molecular weight DNA. Briefly pulse-labeled (30 to 60 s) DNA in control chromatin also has an enhanced susceptibility to nuclease digestion of the same degree as found in ch-ehromatin. The time of recovery of increased nuclease susceptibility of newly made chromatin DNA (via protein addition) to control levels is about 10 to 15 minutes and corresponds to the time required for synthesis of replicon-sized units of DNA.In addition to being nuclease-sensitive, both cycloheximide and newly synthesized (30 to 60 s) chromatin have lighter buoyant densities in CsCl gradients than bulk chromatin. This property exists for only one to two minutes in controls and is probably due to structural properties distinct from those rendering nuclease sensitivity.Limit digests of chromatin by micrococcal nuclease yield a characteristic pattern of polynucleotides when resolved in polyacrylamide gels. The radioactivity profiles of limit digest polynucleotides from control and ch-chromatin are identical, indicating that pre-existing chromatin proteins remain in place on newly replicated DNA in the same fashion as in mature chromatin.  相似文献   

13.
1. Autoradiographic experiments revealed that the average size of the replicating unit (replicon) in human phytohaemagglutunin-stimulated lymphocytes is 45 (+/- 1.3) micron. 2. A 5 min pulse of [3H]thymidine labelled DNA chains of approximately 40 S (15 micron) in control lymphocytes as revealed by velocity sedimentation in alkaline sucrose density gradients. Upon chasing in the absence of [3H]-thymidine the labelled DNA increased in size. By 6 h the bulk of the label co-sedimented with full-sized chromosomal DNA. 3. In untreated lymphocytes from patients with megaloblastic anaemia due to vitamin B-12 or folate deficiency or lymphocytes treated with methotrexate (10(-5) M) or hydroxyurea (5 . 10(-4) M) the increase in size of pulse-labelled DNA was slower than in control cells. 4. The block in maturation of pulse-labelled DNA to bulk DNA was not permanent. At 24 h of chase 75-80% of the pulse-label in both control and megaloblastic lymphocytes co-sedimented with bulk DNA. 5. We conclude that the lesions seen in DNA synthesis in megaloblastic anaemia due to folate or vitamin B-12 deficiencies occur through impaired biosynthesis of nucleotide precursors of DNA. Possible explanations of why the defects in DNA synthesis cause altered morphology of proliferating cells in megaloblastic anaemia are suggested.  相似文献   

14.
The mechanism of Col E 1 DNA replication was investigated in a plasmolysed cell system prepared from chloramphenicoltreated E. coli JC 411 (Col E 1). After pulse-labelling with (3)H-dTTP a considerable fraction of the newly synthesized DNA was recovered as single-stranded fragments. Upon alkali denaturation the pulse label was found in DNA chains sedimenting slower than unit length Col E 1 strands with a prominent peak at 5 S. During a chase with unlabeled precursors the label is transferred nearly completely into supercoiled Col E 1 DNA. DNA ligase appears to be required for the joining of the 5 S pieces since in the absence of NAD an accumulation of short fragments is observed.  相似文献   

15.
In detached Vicia embryos, the incorporation of [3-H] thymidine into DNA starts at about 25 h after the beginning of imbibition and reaches maximum at about 33 h. The DNA synthesized during the first replication phase was extracted. Alkaline sucrose density-gradient analyses of the DNA indicated the occurrence of several short pieces of rapidly labeled DNA having sedimentation values of approx. 10 S and 14 S, after a pulse for 5 to 10 min. Prolonged labeling and chase incubation led to a shift of the shorter fragments to longer ones of 19 S and 22 S or more, thus indicating the nature of intermediates during DNA replication of these short fragments.  相似文献   

16.
Alkaline sucrose sedimentation studies of DNA from mouse L cells have demonstrated the following effects of several inhibitors of nucleic acid and protein synthesis on postreplication repair of ultraviolet (UV) damage to their DNA. The DNA newly synthesized by a 2 h [3H]thymidine (dThd) label following 254 nm UV irradiation of 20 J/m2 is made in smaller segments of the number average mol wt (Mn) of ~10 × 106 than the control of ~40 × 106. The presence of caffeine at a concentration of 2 mM during the labeling of the irradiated cells reduces the Mn value to 5.8 × 106, which is nearly comparable to, but somewhat larger than the expected distance between dimers in parental DNA. Afterwards, such an interrupted DNA made in the irradiated cells is completely repaired to the present maximum Mn value of 40 × 106 in the consecutive 4 h chase in unlabeled dThd. The presence of the nucleic acid inhibitor, either 2 mM hydroxyurea, 50 μM arabinofuranosyl cytosine, 2 mM excess dThd or 5 μg/ml of actinomycin D (AMD) during 2- to 24-h chase periods after a 2 h postirradiation label prevents the repair to various extents, while 2 mM caffeine completely inhibits it. In the unirradiated cells, these agents except excess dThd and caffeine also interfere severely with normal elongation of nascent DNA made by a 3 min pulse label, but do not appreciably induce single chain breaks of either newly synthesized or parental DNA. The inhibition of the repair by AMD suggests that de novo elongation of DNA to close the gaps in new DNA made in the irradiated cells requires at least a template-dependent DNA polymerase. In contrast, 100 μg/ml of cycloheximide allows to complete the gap-filling repair, while it simply reduces the rates of chain growth for the repair and normal replication. Therefore, the similar sensitivity of gap-filling repair and normal replication towards the above inhibitors indicates that a preexisting DNA polymerizing system appears to be responsible and to play a common role without new protein synthesis, as far as the repair at early time after UV is concerned.  相似文献   

17.
The localization of newly-replicated DNA in mouse cells of line P815 in culture is studied by high resolution autoradiography. After 20 or 30 sec of incorporation of 3H-thymidine, the silver grains are found throughout the nucleus with a relatively higher (about two-fold) density over the peripheral region of the nucleus. After a further 1 h of chase with non-radioactive thymidine, or after 19 h of continuous growth with the radioactive precursor, the pattern of the nuclear distribution of label is not appreciably different from that found after a short pulse. Autoradiography, combined with EDTA staining resulting in a preferential bleaching of the chromatin, reveals after a short pulse of 3H-thymidine that most of the silver grains lie close to, or over, the border zone between condensed chromatin and the interchromatin region. The results are discussed in the context of other recent findings concerning the sites of DNA replication in eukaryotic cells obtained with different cell systems.  相似文献   

18.
19.
Pretreatment of rat spleen lymphocytes with 0.5 mM A23187 had no influence on the prostaglandins E2 and F2 alpha content, but was followed by the increasing of both 15-HETE and leukotriene B4 levels. Lypoxygenase activity of lymphocytes towards exogenous substrate linoleic acid was increased within 3-12 h after 1 Gy irradiation and decreased below the control level at 24 h. The changes of lypoxygenase activity correlate with that of 15-HETE content. Additional incubation of the cells, obtained at 3 h after irradiation, was followed by the intensification of the chromatin internucleosomal fragmentation and low-molecular DNA fragments accumulation. When 20 mM nordihydroguaiaretic acid, a selective inhibitor of arachidonate lipooxidation, was added to the incubation medium, DNA fragmentation was observed to be significantly less, especially at the early steps of incubation. These results suggest, that metabolites like H(P)ETE are early endogenous mediators of radiation-induced spleen lymphocytes apoptosis.  相似文献   

20.
J C Huijzer  M J Smerdon 《Biochemistry》1992,31(21):5077-5084
We have examined the incorporation of biotinyl-11-deoxyuridine triphosphate (BiodUTP) into excision repair patches of UV-irradiated confluent human fibroblasts. Cells were reversibly permeabilized to BiodUTP with lysolecithin, and biotin was detected in DNA on nylon filters using a streptavidin/alkaline phosphatase colorimetric assay. Following a UV dose of 12 J/m2, maximum incorporation of BioUTP occurred at a lysolecithin concentration (80-100 micrograms/mL) similar to that for incorporation of dTTP. Incorporation of BiodUTP into repair patches increased with UV dose up to 4 and 8 J/m2 in two normal human fibroblast strains, while no incorporation of BiodUTP was observed in xeroderma pigmentosum (group A) human fibroblasts. The repair-incorporated biotin was not removed from the DNA over a 48-h period, and only slowly disappeared after longer times (approximately 30% in 72 h), while little of the biotin remained in cells induced to divide. Furthermore, the stability of the biotin in repaired DNA was unaffected by a second dose of UV radiation several hours after the biotin-labeling period to induce a "second round" of excision repair. Exonuclease III digestion and gap-filling with DNA polymerase I indicate that the majority of biotin-labeled repair patches (approximately 80%) are rapidly ligated in confluent human cells. However, the remaining patches were not ligated after a 24-h chase period, in contrast to dTTP-labeled repair patches. The BiodUMP repair label in both chromatin and DNA is preferentially digested by staphylococcal nuclease, preventing the use of this enzyme for nucleosome mapping in these regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号