首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.  相似文献   

2.
Cyclin D3, like cyclin D1 and D2 isoforms, is a crucial component of the core cell cycle machinery in mammalian cells. It also exhibits its unique properties in many other physiological processes. In the present study, using yeast two-hybrid screening, we identified ERK3, an atypical mitogen-activated protein kinase (MAPK), as a cyclin D3 binding partner. GST pull-down assays showed that cyclin D3 interacts directly and specifically with ERK3 in vitro. The binding of cyclin D3 and ERK3 was further confirmed in vivo by co-immunoprecipitation assay and confocal microscopic analysis. Moreover, carboxy-terminal extension of ERK3 was responsible for its association with intact cyclin D3. These findings further expand distinct roles of cyclin D3 and suggest the potential activity of ERK3 in cell proliferation.  相似文献   

3.
The vast majority of physiological processes in living cells are mediated by protein–protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80–100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase l, β-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.  相似文献   

4.
The third metal-binding domain of the human Menkes protein (MNK3), a copper(I)-transporting ATPase, has been expressed in Escherichia coli and characterized in solution. The solution structure of MNK3, its copper(I)-binding properties, and its interaction with the physiological partner, HAH1, have been studied. MNK3 is the domain most dissimilar in structure from the other domains of the Menkes protein. This is reflected in a significant rearrangement of the last strand of the four-stranded beta-sheet when compared with the other known homologous proteins or protein domains. MNK3 is also peculiar with respect to its interaction with the copper(I) ion, as it was found to be a comparatively weak binder. Copper(I) transfer from metal-loaded HAH1 was observed experimentally, but the metal distribution was shifted toward binding by HAH1. This is at variance with what is observed for the other Menkes domains.  相似文献   

5.
6.
Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)-dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK:BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.  相似文献   

7.
The NEDD8 pathway plays an essential role in various physiological processes, such as cell cycle progression and signal transduction. The conjugation of NEDD8 to target proteins is initiated by the NEDD8-activating enzyme composed of APP-BP1 and Uba3. In the present study, we show that APP-BP1 is degraded by ubiquitin-dependent proteolysis. To study biological functions of TRIP12, a HECT domain-containing E3 ubiquitin ligase, we used the yeast two-hybrid system and identified APP-BP1 as its binding partner. Immunoprecipitation analysis showed that TRIP12 specifically interacts with the APP-BP1 monomer but not with the APP-BP1/Uba3 heterodimer. Overexpression of TRIP12 enhanced the degradation of APP-BP1, whereas knockdown of TRIP12 stabilized it. In vitro ubiquitination assays revealed that TRIP12 functions as an E3 enzyme of APP-BP1 and additionally requires an E4 activity for polyubiquitination of APP-BP1. Moreover, neddylation of endogenous CUL1 was increased in TRIP12 knockdown cells, while complementation of the knockdown cells with TRIP12 lowered neddylated CUL1. Our data suggest that that TRIP12 promotes degradation of APP-BP1 by catalyzing its ubiquitination, which in turn modulates the neddylation pathway.  相似文献   

8.
The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.  相似文献   

9.
Cytochrome c(551) from Pseudomonas aeruginosa is a monomeric redox protein of 82 amino-acid residues, involved in dissimilative denitrification as the physiological electron donor of cd(1) nitrite reductase. The distribution of charged residues on the surface of c(551) is very anisotropic: one side is richer in acidic residues whereas the other shows a ring of positive side chains, mainly lysines, located at the border of an hydrophobic patch which surrounds the heme crevice. In order to map in cytochrome c(551) the surface involved in electron transfer, we have introduced specific mutations in three residues belonging to the hydrophobic patch, namely Val23-->Asp, Pro58-->Ala and Ile59-->Glu. The effect of these mutations was analyzed studying both the self-exchange rate and the electron-transfer activity towards P. aeruginosa cd(1) nitrite reductase, the physiological partner and P. aeruginosa azurin, a copper protein often used as a model redox partner in vitro. Our results show that introduction of a negative charge in the hydrophobic patch severely hampers both homonuclear and heteronuclear electron transfer.  相似文献   

10.
The Atx1 metallochaperone protein is a cytoplasmic Cu(I) receptor that functions in intracellular copper trafficking pathways in plants, microbes, and humans. A key physiological partner of the Saccharomyces cerevisiae Atx1 is Ccc2, a cation transporting P-type ATPase located in secretory vesicles. Here, we show that Atx1 donates its metal ion cargo to the first N-terminal Atx1-like domain of Ccc2 in a direct and reversible manner. The thermodynamic gradient for metal transfer is shallow (K(exchange) = 1.4 +/- 0.2), establishing that vectorial delivery of copper by Atx1 is not based on a higher copper affinity of the target domain. Instead, Atx1 allows rapid metal transfer to its partner. This equilibrium is unaffected by a 50-fold excess of the Cu(I) competitor, glutathione, indicating that Atx1 also protects Cu(I) from nonspecific reactions. Mechanistically, we propose that a low activation barrier for transfer between partners results from complementary electrostatic forces that ultimately orient the metal-binding loops of Atx1 and Ccc2 for formation of copper-bridged intermediates. These thermodynamic and kinetic considerations suggest that copper trafficking proteins overcome the extraordinary copper chelation capacity of the eukaryotic cytoplasm by catalyzing the rate of copper transfer between physiological partners. In this sense, metallochaperones work like enzymes, carefully tailoring energetic barriers along specific reaction pathways but not others.  相似文献   

11.
TRK-fused gene (TFG) was first identified as a partner of NTRK1 in generating the thyroid TRK-T3 oncogene, and is also involved in oncogenic rearrangements with ALK in anaplastic lymphoma and NOR1 in mixoid chondrosarcoma. The TFG physiological role is still unknown, but the presence of a number of motifs involved in protein interactions suggests that it may function by associating with other proteins. We have recently demonstrated that TFG associates and regulates the activity of the tyrosine phosphatase SHP-1. In this study by yeast two-hybrid screening we identified NEMO and TANK, two proteins modulating the NF-kappaB pathway, as novel TFG-interacting proteins. These interactions were further characterized in vitro and in vivo. We provide evidence that TFG and NEMO may be part of the same high molecular weight complex. TFG enhances the effect of TNF-alpha, TANK, TNF receptor-associated factor (TRAF)2, and TRAF6 in inducing NF-kappaB activity. We suggest that TFG is a novel member of the NF-kappaB pathway.  相似文献   

12.
In acute myelogenous and lymphoid leukemias, rearrangements involving the MLL (mixed lineage leukemia) gene at chromosome 11q23 are frequent. The truncated MLL protein is fused in-frame to a series of partner proteins. We previously identified the formin-binding protein 17 (FBP17) as such an MLL fusion partner. In this study, we explored in vivo physiological interaction partners of FBP17 using a two-hybrid assay and found tankyrase (TNKS), an ADP-ribose polymerase protein involved in telomere maintenance and mitogen-activated protein kinase signaling. We demonstrate that FBP17 binds via a special TNKS-binding motif to tankyrase. The physiological relevance is indicated by co-immunoprecipitation of endogenous proteins in 293T cells.  相似文献   

13.
NMR and visible spectroscopy coupled to redox measurements were used to determine the equilibrium thermodynamic properties of the four haems in cytochrome c3 under conditions in which the protein was bound to ligands, the small anion phosphate and the protein rubredoxin with the iron in the active site replaced by zinc. Comparison of these results with data for the isolated cytochrome shows that binding of ligands causes only small changes in the reduction potentials of the haems and their pairwise interactions, and also that the redox-sensitive acid-base centre responsible for the redox-Bohr effect is essentially unaffected. Although neither of the ligands tested is a physiological partner of cytochrome c3, the small changes observed for the thermodynamic properties of cytochrome c3 bound to these ligands vs. the unbound state, indicate that the thermodynamic properties measured for the isolated protein are relevant for a physiological interpretation of the role of this cytochrome in the bioenergetic metabolism of Desulfovibrio.  相似文献   

14.
15.
ABSTRACT

Primary cilium-dependent macroautophagy/autophagy is induced by the urinary flow in epithelial cells of the kidney proximal tubule. A major physiological outcome of this cascade is the control of cell size. Some components of the ATG machinery are recruited at the primary cilium to generate autophagic structures. Shear stress induced by the liquid flow promotes PtdIns3P synthesis at the primary cilium, and this lipid is required both for ciliogenesis and initiation of autophagy. We showed that PtdIns3P is generated by PIK3C2A, but not by PIK3C3/VPS34, during flow-associated primary cilium-dependent autophagy, in a ULK1-independent manner. Along the same line BECN1 (beclin 1), a partner of PIK3C3 in starvation-induced autophagy, is not recruited at the primary cilium under shear stress. Thus, kidney epithelial cells mobilize different PtdIns 3-kinases, i.e., PIK3C2A or PIK3C3, to produce PtdIns3P in order to initiate autophagy depending on the stimuli (shear stress or starvation).  相似文献   

16.
The relative impact of lichen photobiont and mycobiont was evaluated by submitting nine lichen species with: (i) different photobiont types; (ii) different lichen growth forms; and (iii) different nutrients, pH, humidity preferences; to a range of Cu concentrations (μM) supplied in repeated cycles to simulate the natural process of uptake under field conditions. The physiological performance of the photosystem II photochemical reactions was measured using Fv/Fm and the metabolic activity of the mycobiont was evaluated using ergosterol and intracellular K-loss as indicators. Lichens with higher cation exchange capacity showed higher intracellular Cu uptake and their ecology seemed to be associated with low-nutrient environments. Thus the wall and external matrix, mainly characteristic of the mycobiont partner, cannot be ignored as the first site of interaction of metals with lichens. No common intracellular Cu concentration threshold was found for the physiological impacts observed in the different species. Most physiological effects of Cu uptake in sensitive lichens occurred for intracellular Cu below 200 μg/g dw whereas more tolerant species were able to cope with intracellular Cu at least 3 times higher. Cyanobacterial lichens showed to be more sensitive to Cu uptake than green-algal lichens. Within the Trebouxia lichens, different species showed different sensitivities to Cu uptake, suggesting that the mycobiont may change the microenvironment close to the photobiont partner providing different degrees of protection. Despite the fact that the photobiont is the productive partner, the metabolic activity of the mycobiont of lichen species adapted to environments rich in nutrients, showed to be more sensitive to Cu uptake than the photochemical performance of the photobiont.  相似文献   

17.
TNFAIP1 is a protein which can be induced by tumor necrosis factorα (TNFα) and interleukin-6 (IL-6), it may play roles in DNA synthesis, DNA repair, cell apoptosis and human diseases. However, very little has been known about how TNFAIP1 acts in these physiological processes. In this paper, CK2β was identified as a partner of TNFAIP1 by screening the HeLa cDNA library in yeast two-hybrid system with TNFAIP1 as a bait. Furthermore, it was demonstrated that CK2 could phosphorylate TNFAIP1 in vitro and in vivo, which facilitated the distribution of TNFAIP1 in nucleus and enhanced its interaction with PCNA. It is suggested that the phosphorylation of TNFAIP1 may be required for its functions.  相似文献   

18.
α-Synuclein has been implicated in the pathogenesis of Parkinson’s disease. Although it is highly conserved, its physiological function has not yet been elucidated in detail. In an effort to define the function of α-synuclein, interacting proteins were screened in phage display assays. Prenylated Rab acceptor protein 1 (PRA1) was identified as an interacting partner. A selective interaction between α-synuclein and PRA1 was confirmed by coimmunoprecipitation and GST pull-down assays. PRA1 and α-synuclein were colocalized in N2a neuronal cells. Cotransfection of α-synuclein and PRA1 caused vesicles to accumulate in the periphery of the cytosol in neuronal cells, suggesting that overexpression of α-synuclein hinders proper vesicle trafficking and recycling as a result of the interaction between α-synuclein and PRA1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号