首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of immunoreactive porcine brain natriuretic peptide in rat tissues was studied with a specific radioimmunoassay for porcine brain natriuretic peptide-26. The cross-reactivity of the antiserum used was less than 0.001% with rat atrial natriuretic peptide, rat brain natriuretic peptide-32 and rat brain natriuretic peptide-45. Immunoreactive porcine brain natriuretic peptide was detectable in various tissues of the rat, and high concentrations of immunoreactive porcine brain natriuretic peptide were found in the brain and cardiac atrium, with the highest level in the hypothalamus (159±30 fmol/gram wet tissue, mean±SEM, n=4). Reverse phase high performance liquid chromatography showed that the immunoreactive porcine brain natriuretic peptide of the whole brain and heart extracts eluted mainly at an identical position to synthetic porcine brain natriuretic peptide-26. These findings indicate that porcine brain natriuretic peptide-like substance, distinct from rat brain natriuretic peptide, is present in high concentrations in the rat brain and cardiac atrium.  相似文献   

2.
In this study, we investigate the effects of modelling choices for the brain–skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)—extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain–skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain–skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney–Rivlin hyperviscoelastic, neo–Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain–skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.  相似文献   

3.
Human brain natriuretic peptide-like immunoreactivity in human brain.   总被引:8,自引:0,他引:8  
The presence of immunoreactive human brain natriuretic peptide in the human brain was studied with a specific radioimmunoassay for human brain natriuretic peptide-32. This assay showed no significant cross-reaction with human alpha atrial natriuretic peptide, porcine brain natriuretic peptide or rat brain natriuretic peptide. Immunoreactive human brain natriuretic peptide was found in all 5 regions of human brain examined (cerebral cortex, thalamus, cerebellum, pons and hypothalamus) (0.6-6.7 pmol/g wet weight, n = 3). These values were comparable to the concentrations of immunoreactive alpha atrial natriuretic peptide in human brain (0.5-10.1 pmol/g wet weight). However, Sephadex G-50 column chromatography showed that the immunoreactive human brain natriuretic peptide in the human brain eluted earlier than synthetic human brain natriuretic peptide-32. These findings suggest that human brain natriuretic peptide is present in the human brain mainly as larger molecular weight forms.  相似文献   

4.
Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.  相似文献   

5.
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large‐ and small‐brained animals and only minor sex‐specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions.  相似文献   

6.
Brain pericytes are an important constituent of neurovascular unit. They encircle endothelial cells and contribute to the maturation and stabilization of the capillaries in the brain. Recent studies have revealed that brain pericytes play pivotal roles in a variety of brain functions, such as regulation of capillary flow, angiogenesis, blood brain barrier, immune responses, and hemostasis. In addition, brain pericytes are pluripotent and can differentiate into different lineages similar to mesenchymal stem cells. The brain pericytes are revisited as a key player to maintain brain function and repair brain damage.  相似文献   

7.
The emerging technology of brain organoids deriving from human pluripotent stem cells provides unprecedented opportunities to study human brain development and associated disorders. Various brain organoid protocols have been developed that can recapitulate some key features of cell type diversity, cytoarchitectural organization, developmental processes, functions, and pathologies of the developing human brain. In this review, we focus on patterning of human stem cell-derived brain organoids. We start with an overview of general procedures to generate brain organoids. We then highlight some recently developed brain organoid protocols and chemical cues involved in modeling development of specific human brain regions, subregions, and multiple regions together. We also discuss limitations and potential future improvements of human brain organoid technology.  相似文献   

8.
Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis.  相似文献   

9.
Rat fetal brain and body tryptophan, and brain serotonin were measured at 15, 17, and 19 days postconception, and on the day of birth. Body tryptophan and brain serotonin increased with age during the last trimester of pregnancy; brain tryptophan increased only slightly during this time period. L-tryptophan injected into the mother or into neonates increased fetal and neonatal body and brain tryptophan, and brain serotonin at all ages studied. The dose- and time-relationships of 1-tryptophan-induced changes in brain tryptophan and serotonin were evaluated in 19 day old fetuses. The systemic administration of 1-tryptophan directly to the 19 day old fetus also increased brain serotonin. Thus, fetal brain serotonin neurons appear to have the capacity to synthesize the neurotransmitter from exogenously administered tryptophan, even though these neurons appear to be relatively immature.  相似文献   

10.
Peptide extracts of rat brain powerfully inhibited the cyclic AMP phosphodiesterase activity of rat brain homogenate. Similar extracts of ox brain showed comparable although less potent activity. Preliminary investigation of the physicochemical properties of brain extracts indicated that the rat brain extract contained an active peptide of low molecular weight (about 1400), whereas ox brain contained two such peptides (about 1400 and 900). These studies indicate that endogenous oligopeptides that inhibit cyclic AMP phosphodiesterase are present in brain. Experiments on several pure peptides known to be present in brain. Experiments on several pure peptides known to be present in the CNS showed that the majority were inactive against brain phosphodiesterase, but ACTH(1-24), somatostatin, substance P and Lys8-vasopressin, in descending order of potency, were active. To help distinguish the peptides found in rat and ox brain extracts from known peptides, preliminary analyses of amino acid composition were performed. These suggested that the peptides found in brain extracts were distinct from known peptides having the ability to inhibit cyclic AMP phosphodiesterase.  相似文献   

11.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   

12.
To further understand the neuroanatomy, neurochemistry and neuropathology of the normal and diseased human brain, it is essential to have access to human brain tissue where the biological and chemical nature of the tissue is optimally preserved. We have established a human brain bank where brain tissue is optimally processed and stored in order to provide a resource to facilitate neuroscience research of the human brain in health and disease. A donor programme has been established in consultation with the community to provide for the post-mortem donation of brain tissue to the brain bank. We are using this resource of human brain tissue to further investigate the basis of normal neuronal functioning in the human brain as well as the mechanisms of neuronal dysfunction and degeneration in neurodegenerative diseases. We have established a protocol for the preservation of post-mortem adult human brain tissue firstly by snap-freezing unfixed brain tissue and secondly by chemical fixation and then storage of this tissue at -80 degrees C in a human brain bank. Several research techniques such as receptor autoradiography, DNA and RNA analysis, are carried out on the unfixed tissue and immunohistochemical and histological analysis is carried out on the fixed human tissue. Comparison of tissue from normal control cases and from cases with neurodegenerative disorders is carried out in order to document the changes that occur in the brain in these disorders and to further investigate the underlying pathogenesis of these devastating neurological diseases.  相似文献   

13.
The distribution of aluminum into and out of the brain   总被引:1,自引:0,他引:1  
The extent, rate and possible mechanism(s) by which aluminum enters and is removed from the brain are presented. Introduction of Al into systemic circulation as Al.transferrin, the predominant Al species in plasma, resulted in about 7 x 10(-5) of the dose in the brain 1 day after injection. This brain Al entry could be mediated by transferrin-receptor-mediated endocytosis (TfR-ME). When Al.citrate, the predominant small molecular weight Al species in blood plasma, is introduced systemically, Al rapidly enters the brain. The rate of Al.citrate brain influx suggests a more rapid process than mediated by diffusion or TfR-ME. The question has been raised: "Is the brain a 'one-way sink' for aluminum?". Clinical observations are a basis for this suggestion. Rat brain 26Al concentrations decreased only slightly from 1 to 35 days after systemic 26Al injection, in the absence or presence of the aluminum chelator desferrioxamine, suggesting prolonged brain Al retention. However, studies of brain and blood extracellular Al at steady state, using microdialysis, suggest brain Al efflux exceeds influx, suggesting carrier-mediated brain Al efflux. The predominant brain extracellular fluid Al species is probably Al.citrate. The hypothesis that brain Al efflux, presumably of Al.citrate, is mediated by the monocarboxylate transporter was tested and supported. Although some Al that enters the brain is rapidly effluxed, it is suggested that a fraction enters brain compartments within 24 h from which it is only very slowly eliminated.  相似文献   

14.
创伤性脑损伤是一种高致死率的疾病,严重危害人类生命健康。肠脑轴是大脑和胃肠道系统之间主要的双向通讯途径。近年来,创伤性脑损伤与肠道菌群的相互作用关系逐渐被揭示。肠道菌群通过肠脑轴参与了创伤性脑损伤后急性病理损伤的调节过程并发挥重要作用。本文综述了创伤性脑损伤的发生、对人类健康的巨大影响,肠脑轴的含义及其在颅脑损伤中的病理调节机制,并在此基础上提出可能的治疗手段,包括粪便微生物菌群移植、使用益生菌、刺激迷走神经、摄入多酚类物质以及靶向免疫调节策略,以期为临床治疗创伤性脑损伤提供新的思路。  相似文献   

15.
Abstract— Seven-day-old rats were injected intraperitoneally with l -phenylalanine (1 g/kg) and the time course of brain polyribosome disaggregation and changes in brain levels of phenylalanine, tryptophan and tyrosine were determined. Disaggregation of brain polyribosomes preceded the increase in levels of phenylalanine in brain, and followed the same time course as depletion of tryptophan from brain. The effects of several metabolites of phenylalanine (which are formed in phenylketonuria) on protein synthesis in vitro was determined for brain and liver systems. None of the compounds tested was inhibitory at concentrations below 10 mM and in all cases hepatic protein synthesis was more sensitive to inhibition than was the corresponding system from brain. Ribosomal dimers, formed in brain after injection of phenylalanine, were incapable of supporting high levels of protein synthesis in vitro, a finding that suggested that the inhibition of protein synthesis in vitro in cell-free systems of brain tissue after injection of phenylalanine into young rats was mediated by disaggregation of brain polyribosomes associated with tryptophan deficiency in brain.  相似文献   

16.
1. The quantitative estimation of total acetylcholine content in the whole brain tissue in normal Egyptian gerbil Gerbillus pyramidum, gives an average of 1.43 +/- 0.06 micrograms of acetylcholine chloride/g fresh brain tissue. 2. The brain acetylcholine level in Gerbillus pyramidum was generally found to vary with the changes induced in the brain activity by drugs. 3. Depressants caused a increase and convulsants a decrease in total brain acetylcholine level. 4. Phenytoin depressed the brain activity but lowered brain acetylcholine level.  相似文献   

17.
In animals, rapid correction of chronic hyponatremia produces brain lesions similar to those seen in central pontine myelinolysis. This is the first study of the effects of rapid correction (9 h) of chronic hyponatremia (3 d) on brain electrolyte, water, and amino acid contents in young mice. Despite profound hyponatremia, decreases in brain electrolytes and amino acids permitted an apparent osmotic balance between blood and brain with a normal brain water content. Rapid elevation of the depressed plasma sodium concentration to normonatremic levels caused dehydration of the brain. Although brain Na+ and K+ levels were returned to normal, the relatively brief interval of treatment was insufficient to allow complete recovery of brain amino acid levels. Findings support an osmotic disequilibrium - plasma osmolality higher than brain - in the pathogenesis of the brain lesions following rapid correction of chronic hyponatremia and suggest caution in the rate of elevation of the depressed plasma Na+ levels.  相似文献   

18.
A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system.  相似文献   

19.
To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.  相似文献   

20.
Abstract: β-Phenylethylamine (PEA) was characterized as a substrate for type A and type B monoamine oxidase (MAO) in brain and liver mitochondria of eight species at different substrate concentrations. In all species, at 10.0 μM, PEA was almost specific for type B MAO. At 1000 μM, however, the amine was common for both types of MAO in rat brain and liver, human brain and liver, mouse brain, guinea pig brain and liver, and bovine brain, while it was specific for type B MAO in mouse liver, rabbit brain and liver, bovine liver, pig brain and liver, and chicken brain and liver. From the present study, when PEA is used as a type B substrate, it is recommended that the substrate concentration should be sufficiently low to avoid the effects of species and tissue differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号