首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The d-mannonate dehydratase (ManD) function was assigned to a group of orthologous proteins in the mechanistically diverse enolase superfamily by screening a library of acid sugars. Structures of the wild type ManD from Novosphingobium aromaticivorans were determined at pH 7.5 in the presence of Mg2+ and also in the presence of Mg2+ and the 2-keto-3-keto-d-gluconate dehydration product; the structure of the catalytically active K271E mutant was determined at pH 5.5 in the presence of the d-mannonate substrate. As previously observed in the structures of other members of the enolase superfamily, ManD contains two domains, an N-terminal alpha+beta capping domain and a (beta/alpha)7beta-barrel domain. The barrel domain contains the ligands for the essential Mg2+, Asp 210, Glu 236, and Glu 262, at the ends of the third, fourth, and fifth beta-strands of the barrel domain, respectively. However, the barrel domain lacks both the Lys acid/base catalyst at the end of the second beta-strand and the His-Asp dyad acid/base catalyst at the ends of the seventh and sixth beta-strands, respectively, that are found in many members of the superfamily. Instead, a hydrogen-bonded dyad of Tyr 159 in a loop following the second beta-strand and Arg 147 at the end of the second beta-strand are positioned to initiate the reaction by abstraction of the 2-proton. Both Tyr 159 and His 212, at the end of the third beta-strand, are positioned to facilitate both syn-dehydration and ketonization of the resulting enol intermediate to yield the 2-keto-3-keto-d-gluconate product with the observed retention of configuration. The identities and locations of these acid/base catalysts as well as of cationic amino acid residues that stabilize the enolate anion intermediate define a new structural strategy for catalysis (subgroup) in the mechanistically diverse enolase superfamily. With these differences, we provide additional evidence that the ligands for the essential Mg2+ are the only conserved residues in the enolase superfamily, establishing the primary functional importance of the Mg2+-assisted strategy for stabilizing the enolate anion intermediate.  相似文献   

2.
Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report we use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI:21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of the third, fourth, and fifth beta-strands in the (beta/alpha)7beta-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second beta-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and beta-strands (His 351 and Asp 324, respectively), and a Glu at the end of the eighth beta-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous beta-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting enol, likely by the conjugate acid of Lys 220, to yield the 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L-galactonate and D-arabinonate in competition with dehydration. The functional promiscuity discovered for FucD highlights possible structural mechanisms for evolution of function in the enolase superfamily.  相似文献   

3.
Yew WS  Fedorov AA  Fedorov EV  Almo SC  Gerlt JA 《Biochemistry》2007,46(33):9564-9577
We assigned l-talarate dehydratase (TalrD) and galactarate dehydratase (GalrD) functions to a group of orthologous proteins in the mechanistically diverse enolase superfamily, focusing our characterization on the protein encoded by the Salmonella typhimurium LT2 genome (GI:16766982; STM3697). Like the homologous mandelate racemase, l-fuconate dehydratase, and d-tartrate dehydratase, the active site of TalrD/GalrD contains a general acid/base Lys 197 at the end of the second beta-strand in the (beta/alpha)7beta-barrel domain, Asp 226, Glu 252, and Glu 278 as ligands for the essential Mg2+ at the ends of the third, fourth, and fifth beta-strands, a general acid/base His 328-Asp 301 dyad at the ends of the seventh and sixth beta-strands, and an electrophilic Glu 348 at the end of the eighth beta-strand. We discovered the function of STM3697 by screening a library of acid sugars; it catalyzes the efficient dehydration of both l-talarate (kcat = 2.1 s-1, kcat/Km = 9.1 x 10(3) M-1 s-1) and galactarate (kcat = 3.5 s-1, kcat/Km = 1.1 x 10(4) M-1 s-1). Because l-talarate is a previously unknown metabolite, we demonstrated that S. typhimurium LT2 can utilize l-talarate as carbon source. Insertional disruption of the gene encoding STM3697 abolishes this phenotype; this disruption also diminishes, but does not eliminate, the ability of the organism to utilize galactarate as carbon source. The dehydration of l-talarate is accompanied by competing epimerization to galactarate; little epimerization to l-talarate is observed in the dehydration of galactarate. On the basis of (1) structures of the wild type enzyme complexed with l-lyxarohydroxamate, an analogue of the enolate intermediate, and of the K197A mutant complexed with l-glucarate, a substrate for exchange of the alpha-proton, and (2) incorporation of solvent deuterium into galactarate in competition with dehydration, we conclude that Lys 197 functions as the galactarate-specific base and His 328 functions as the l-talarate-specific base. The epimerization of l-talarate to galactarate that competes with dehydration can be rationalized by partitioning of the enolate intermediate between dehydration (departure of the 3-OH group catalyzed by the conjugate acid of His 328) and epimerization (protonation on C2 by the conjugate acid of Lys 197). The promiscuous catalytic activities discovered for STM3697 highlight the evolutionary potential of a "conserved" active site architecture.  相似文献   

4.
Klenchin VA  Schmidt DM  Gerlt JA  Rayment I 《Biochemistry》2004,43(32):10370-10378
The members of the mechanistically diverse enolase superfamily share a bidomain structure formed from a (beta/alpha)7beta-barrel domain [a modified (beta/alpha)8- or TIM-barrel] and a capping domain formed from N- and C-terminal segments of the polypeptide. The active sites are located at the interface between the C-terminal ends of the beta-strands in the barrel domain and two flexible loops in the capping domain. Within this structure, the acid/base chemistry responsible for formation and stabilization of an enediolate intermediate derived from a carboxylate anion substrate and the processing of it to product is "hard-wired" by functional groups at the C-terminal ends of the beta-strands in the barrel domain; the identity of the substrate is determined in part by the identities of residues located at the end of the eighth beta-strand in the barrel domain and two mobile loops in the capping domain. On the basis of the identities of the acid/base functional groups at the ends of the beta-strands, the currently available structure-function relationships derived from functionally characterized members are often sufficient for "deciphering" the identity of the chemical reaction catalyzed by sequence-divergent members discovered in genome projects. However, insufficient structural information for liganded complexes for specifying the identity of the substrate is available. In this paper, the structure of the complex of L-Ala-L-Glu with the L-Ala-D/L-Glu epimerase from Bacillus subtilis is reported. As expected for the 1,1-proton transfer reaction catalyzed by this enzyme, the alpha-carbon of the substrate is located between Lys 162 and Lys 268 at the ends of the second and sixth beta-strands in the barrel domain. The alpha-ammonium group of the l-Ala moiety is hydrogen bonded to both Asp 321 and Asp 323 at the end of the eighth beta-strand, revealing a novel strategy for substrate recognition in the superfamily. The delta-carboxylate group of the Glu moiety is hydrogen bonded to Arg 24 in one of the flexible loops in the capping domain, thereby providing a structural explanation for the restricted substrate specificity of this epimerase [Schmidt, D. M., Hubbard, B. K., and Gerlt, J. A. (2001) Biochemistry 40, 15707-15715]. These studies provide important new information about the structural bases for substrate specificity in the enolase superfamily.  相似文献   

5.
Yew WS  Fedorov AA  Fedorov EV  Wood BM  Almo SC  Gerlt JA 《Biochemistry》2006,45(49):14598-14608
We focus on the assignment of function to and elucidation of structure-function relationships for a member of the mechanistically diverse enolase superfamily encoded by the Bradyrhizobium japonicum genome (bll6730; GI:27381841). As suggested by sequence alignments, the active site contains the same functional groups found in the active site of mandelate racemase (MR) that catalyzes a 1,1-proton transfer reaction: two acid/base catalysts, Lys 184 at the end of the second beta-strand, and a His 322-Asp 292 dyad at the ends of the seventh and sixth beta-strands, respectively, as well as ligands for an essential Mg2+, Asp 213, Glu 239, and Glu 265 at the ends of the third, fourth, and fifth beta-strands, respectively. We screened a library of 46 acid sugars and discovered that only d-tartrate is dehydrated, yielding oxaloacetate as product. The kinetic constants (kcat = 7.3 s(-1); kcat/KM = 8.5 x 10(4) M(-1) s(-1)) are consistent with assignment of the d-tartrate dehydratase (TarD) function. The kinetic phenotypes of mutants as well as the structures of liganded complexes are consistent with a mechanism in which Lys 184 initiates the reaction by abstraction of the alpha-proton to generate a Mg2+-stabilized enediolate intermediate, and the vinylogous beta-elimination of the 3-OH group is general acid-catalyzed by the His 322, accomplishing the anti-elimination of water. The replacement of the leaving group by solvent-derived hydrogen is stereorandom, suggesting that the enol tautomer of oxaloacetate is the product; this expectation was confirmed by its observation by 1H NMR spectroscopy. Thus, the TarD-catalyzed reaction is a "simple" extension of the two-step reaction catalyzed by MR: base-catalyzed proton abstraction to generate a Mg2+-stabilized enediolate intermediate followed by acid-catalyzed decomposition of that intermediate to yield the product.  相似文献   

6.
The X-ray structures of the ligand free (apo) and the Mg(2+)*o-succinylbenzoate (OSB) product complex of o-succinylbenzoate synthase (OSBS) from Escherichia coli have been solved to 1.65 and 1.77 A resolution, respectively. The structure of apo OSBS was solved by multiple isomorphous replacement in space group P2(1)2(1)2(1); the structure of the complex with Mg(2+)*OSB was solved by molecular replacement in space group P2(1)2(1)2. The two domain fold found for OSBS is similar to those found for other members of the enolase superfamily: a mixed alpha/beta capping domain formed from segments at the N- and C-termini of the polypeptide and a larger (beta/alpha)(7)beta barrel domain. Two regions of disorder were found in the structure of apo OSBS: (i) the loop between the first two beta-strands in the alpha/beta domain; and (ii) the first sheet-helix pair in the barrel domain. These regions are ordered in the product complex with Mg(2+)*OSB. As expected, the Mg(2+)*OSB pair is bound at the C-terminal end of the barrel domain. The electron density for the phenyl succinate component of the product is well-defined; however, the 1-carboxylate appears to adopt multiple conformations. The metal is octahedrally coordinated by Asp(161), Glu(190), and Asp(213), two water molecules, and one oxygen of the benzoate carboxylate group of OSB. The loop between the first two beta-strands in the alpha/beta motif interacts with the aromatic ring of OSB. Lys(133) and Lys(235) are positioned to function as acid/base catalysts in the dehydration reaction. Few hydrogen bonding or electrostatic interactions are involved in the binding of OSB to the active site; instead, most of the interactions between OSB and the protein are either indirect via water molecules or via hydrophobic interactions. As a result, evolution of both the shape and the volume of the active site should be subject to few structural constraints. This would provide a structural strategy for the evolution of new catalytic activities in homologues of OSBS and a likely explanation for how the OSBS from Amycolaptosis also can catalyze the racemization of N-acylamino acids [Palmer, D. R., Garrett, J. B., Sharma, V., Meganathan, R., Babbitt, P. C., and Gerlt, J. A. (1999) Biochemistry 38, 4252-4258].  相似文献   

7.
Gulick AM  Hubbard BK  Gerlt JA  Rayment I 《Biochemistry》2001,40(34):10054-10062
D-Glucarate dehydratase from Escherichia coli (GlucD), a member of the enolase superfamily, catalyzes the dehydration of both D-glucarate and L-idarate to form 5-keto-4-deoxy-D-glucarate (KDG). Previous mutagenesis and structural studies identified Lys 207 and the His 339-Asp 313 dyad as the general basic catalysts that abstract the C5 proton from L-idarate and D-glucarate, respectively, thereby initiating the reaction by formation of a stabilized enediolate anion intermediate [Gulick, A. M., Hubbard, B. K., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 4590-4602]. The vinylogous elimination of the 4-OH group from this intermediate presumably requires a general acid catalyst. The structure of GlucD with KDG and 4-deoxy-D-glucarate bound in the active site revealed that only His 339 and Asn 341 are proximal to the presumed position of the 4-OH leaving group. The N341D and N341L mutants of GlucD were constructed and subjected to both mechanistic and structural analyses. The N341L but not N341D mutant catalyzed the dehydrofluorination of 4-deoxy-4-fluoro-D-glucarate, demonstrating that in this mutant the initial proton abstraction from C5 can be decoupled from elimination of the leaving group from C4. The kinetic properties and structures of these mutants suggest that either Asn 341 participates in catalysis as the general acid that facilitates the departure of the 4-leaving group or is essential for proper positioning of His 339. In the latter scenario, His 339 would function not only as the general base that abstracts the C5 proton from D-glucarate but also as the general acid that catalyzes both the departure of the 4-OH group and the stereospecific incorporation of solvent hydrogen with retention of configuration to form the KDG product. The involvement of a single functional group in this reaction highlights the plasticity of the active site design in members of the enolase superfamily.  相似文献   

8.
Crystallographic and kinetic methods have been used to characterize a site-specific variant of yeast enolase in which Ser 39 in the active-site flap has been changed to Ala. In the wild-type enzyme, the carbonyl and hydroxyl groups of Ser 39 chelate the second equivalent of divalent metal ion, effectively anchoring the flap over the fully liganded active site. With Mg(2+) as the activating cation, S39A enolase has <0.01% of wild-type activity as reported previously [J.M. Brewer, C.V. Glover, M.J. Holland, L. Lebioda, Biochim. Biophys. Acta 1383 (2) (1998) 351-355]. Measurements of (2)H kinetic isotope effects indicate that the proton abstraction from 2-phosphoglycerate (2-PGA) is significantly rate determining. Analysis of the isotope effects provides information on the relative rates of formation and breakdown of the enolate intermediate. Moreover, assays with different species of divalent metal ions reveal that with S39A enolase (unlike the case of wild-type enolase), more electrophilic metal ions promote higher activities. The kinetic results with the S39A variant support the notions that a rate-limiting product release lowers the activity of wild-type enolase with more electrophilic metal ions and that the metal ions are used to acidify the C2-proton of 2-PGA. The S39A enolase was co-crystallized with Mg(2+) and the inhibitor phosphonoacetohydroxamate (PhAH). The structure was solved and refined at a resolution of 2.1 A. The structure confirms the conjecture that the active-site flap is opened in the mutant protein. PhAH chelates to both Mg ions as in the corresponding structure of the wild-type complex. Positions of the side chains of catalytic groups, Lys 345 and Glu 211, and of "auxiliary" residues Glu 168 and Lys 396 are virtually unchanged relative to the complex with the wild-type protein. His 159, which hydrogen bonds to the phosphonate oxygens in the wild-type complex, is 5.7 A from the closest phosphonate oxygen, and the loop (154-166) containing His 159 is shifted away from the active center. A peripheral loop, Glu 251-Gly 275, also moves to open access to the active site.  相似文献   

9.
Methylaspartate ammonia-lyase (3-methylaspartase, MAL; EC ) catalyzes the reversible anti elimination of ammonia from L-threo-(2S,3S)-3-methylaspartic acid to give mesaconic acid. This reaction lies on the main catabolic pathway for glutamate in Clostridium tetanomorphum. MAL requires monovalent and divalent cation cofactors for full catalytic activity. The enzyme has attracted interest because of its potential use as a biocatalyst. The structure of C. tetanomorphum MAL has been solved to 1.9-A resolution by the single-wavelength anomalous diffraction method. A divalent metal ion complex of the protein has also been determined. MAL is a homodimer with each monomer consisting of two domains. One is an alpha/beta-barrel, and the other smaller domain is mainly beta-strands. The smaller domain partially occludes the C terminus of the barrel and forms a large cleft. The structure identifies MAL as belonging to the enolase superfamily of enzymes. The metal ion site is located in a large cleft between the domains. Potential active site residues have been identified based on a combination of their proximity to a metal ion site, molecular modeling, and sequence homology. In common with all members of the enolase superfamily, the carboxylic acid of the substrate is co-ordinated by the metal ions, and a proton adjacent to a carboxylic acid group of the substrate is abstracted by a base. In MAL, it appears that Lys(331) removes the alpha-proton of methylaspartic acid. This motif is the defining mechanistic characteristic of the enolase superfamily of which all have a common fold. The degree of structural conservation is remarkable given only four residues are absolutely conserved.  相似文献   

10.
The members of the mechanistically diverse enolase superfamily catalyze different overall reactions. Each shares a partial reaction in which an active site base abstracts the alpha-proton of the carboxylate substrate to generate an enolate anion intermediate that is stabilized by coordination to the essential Mg(2+) ion; the intermediates are then directed to different products in the different active sites. In this minireview, our current understanding of structure/function relationships in the divergent members of the superfamily is reviewed, and the use of this knowledge for our future studies is proposed.  相似文献   

11.
Members of the enolase mechanistically diverse superfamily catalyze a wide variety of chemical reactions that are related by a common mechanistic feature, the abstraction of a proton adjacent to a carboxylate group. Recent investigations into the function and mechanism of the phosphosulfolactate synthase encoded by the ComA gene in Methanococcus jannaschii have suggested that ComA, which catalyzes the stereospecific Michael addition of sulfite to phosphoenolpyruvate to form phosphosulfolactate, may be a member of the enolase superfamily. The ComA-catalyzed reaction, the first step in the coenzyme M biosynthetic pathway, likely proceeds via a Mg2+ ion-stabilized enolate intermediate in a manner similar to that observed for members of the enolase superfamily. ComA, however, has no significant sequence similarity to any known enolase. Here we report the x-ray crystal structure of ComA to 1.7-A resolution. The overall fold for ComA is an (alpha/beta)8 barrel that assembles with two other ComA molecules to form a trimer in which three active sites are created at the subunit interfaces. From the positions of two ordered sulfate ions in the active site, a model for the binding of phosphoenolpyruvate and sulfite is proposed. Despite its mechanistic similarity to the enolase superfamily, the overall structure and active site architecture of ComA are unlike any member of the enolase superfamily, which suggests that ComA is not a member of the enolase superfamily but instead acquired an enolase-type mechanism through convergent evolution.  相似文献   

12.
o-Succinylbenzoate synthase (OSBS) from Escherichia coli, a member of the enolase superfamily, catalyzes an exergonic dehydration reaction in the menaquinone biosynthetic pathway in which 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) is converted to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB). Our previous structural studies of the Mg(2+).OSB complex established that OSBS is a member of the muconate lactonizing enzyme subgroup of the superfamily: the essential Mg(2+) is coordinated to carboxylate ligands at the ends of the third, fourth, and fifth beta-strands of the (beta/alpha)(7)beta-barrel catalytic domain, and the OSB product is located between the Lys 133 at the end of the second beta-strand and the Lys 235 at the end of the sixth beta-strand [Thompson, T. B., Garrett, J. B., Taylor, E. A, Meganathan, R., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 10662-76]. Both Lys 133 and Lys 235 were separately replaced with Ala, Ser, and Arg residues; all six mutants displayed no detectable catalytic activity. The structure of the Mg(2+).SHCHC complex of the K133R mutant has been solved at 1.62 A resolution by molecular replacement starting from the structure of the Mg(2+).OSB complex. This establishes the absolute configuration of SHCHC: the C1-carboxylate and the C6-OH leaving group are in a trans orientation, requiring that the dehydration proceed via a syn stereochemical course. The side chain of Arg 133 is pointed out of the active site so that it cannot function as a general base, whereas in the wild-type enzyme complexed with Mg(2+).OSB, the side chain of Lys 133 is appropriately positioned to function as the only acid/base catalyst in the syn dehydration. The epsilon-ammonium group of Lys 235 forms a cation-pi interaction with the cyclohexadienyl moiety of SHCHC, suggesting that Lys 235 also stabilizes the enediolate anion intermediate in the syn dehydration via a similar interaction.  相似文献   

13.
D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme, is the paradigm member of the recently recognized mechanistically diverse RuBisCO superfamily. The RuBisCO reaction is initiated by abstraction of the proton from C3 of the d-ribulose 1,5-bisphosphate substrate by a carbamate oxygen of carboxylated Lys 201 (spinach enzyme). Heterofunctional homologues of RuBisCO found in species of Bacilli catalyze the tautomerization ("enolization") of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) in the methionine salvage pathway in which 5-methylthio-d-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO, Science 302, 286-290]. The reaction catalyzed by this "enolase" is accomplished by abstraction of a proton from C1 of the DK-MTP 1-P substrate to form the tautomerized product, a conjugated enol. Because the RuBisCO- and "enolase"-catalyzed reactions differ in the regiochemistry of proton abstraction but are expected to share stabilization of an enolate anion intermediate by coordination to an active site Mg2+, we sought to establish structure-function relationships for the "enolase" reaction so that the structural basis for the functional diversity could be established. We determined the stereochemical course of the reaction catalyzed by the "enolases" from Bacillus subtilis and Geobacillus kaustophilus. Using stereospecifically deuterated samples of an alternate substrate derived from d-ribose (5-OH group instead of the 5-methylthio group in MTR) as well as of the natural DK-MTP 1-P substrate, we determined that the "enolase"-catalyzed reaction involves abstraction of the 1-proS proton. We also determined the structure of the activated "enolase" from G. kaustophilus (carboxylated on Lys 173) liganded with Mg2+ and 2,3-diketohexane 1-phosphate, a stable alternate substrate. The stereospecificity of proton abstraction restricts the location of the general base to the N-terminal alpha+beta domain instead of the C-terminal (beta/alpha)8-barrel domain that contains the carboxylated Lys 173. Lys 98 in the N-terminal domain, conserved in all "enolases", is positioned to abstract the 1-proS proton. Consistent with this proposed function, the K98A mutant of the G. kaustophilus "enolase" is unable to catalyze the "enolase" reaction. Thus, we conclude that this functionally divergent member of the RuBisCO superfamily uses the same structural strategy as RuBisCO for stabilizing the enolate anion intermediate, i.e., coordination to an essential Mg2+, but the proton abstraction is catalyzed by a different general base.  相似文献   

14.
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy- l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy- l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, 9944-9954). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis.  相似文献   

15.
Benning MM  Haller T  Gerlt JA  Holden HM 《Biochemistry》2000,39(16):4630-4639
The molecular structure of methylmalonyl CoA decarboxylase (MMCD), a newly defined member of the crotonase superfamily encoded by the Escherichia coli genome, has been solved by X-ray crystallographic analyses to a resolution of 1.85 A for the unliganded form and to a resolution of 2.7 A for a complex with an inert thioether analogue of methylmalonyl CoA. Like two other structurally characterized members of the crotonase superfamily (crotonase and dienoyl CoA isomerase), MMCD is a hexamer (dimer of trimers) with each polypeptide chain composed of two structural motifs. The larger N-terminal domain contains the active site while the smaller C-terminal motif is alpha-helical and involved primarily in trimerization. Unlike the other members of the crotonase superfamily, however, the C-terminal motif is folded back onto the N-terminal domain such that each active site is wholly contained within a single subunit. The carboxylate group of the thioether analogue of methylmalonyl CoA is hydrogen bonded to the peptidic NH group of Gly 110 and the imidazole ring of His 66. From modeling studies, it appears that Tyr 140 is positioned within the active site to participate in the decarboxylation reaction by orienting the carboxylate group of methylmalonyl CoA so that it is orthogonal to the plane of the thioester carbonyl group. Surprisingly, while the active site of MMCD contains Glu 113, which is homologous to the general acid/base Glu 144 in the active site of crotonase, its carboxylate side chain is hydrogen bonded to Arg 86, suggesting that it is not directly involved in catalysis. The new constellation of putative functional groups observed in the active site of MMCD underscores the diversity of function in this superfamily.  相似文献   

16.
The beta-ketoacyl-acyl carrier protein synthases are members of the thiolase superfamily and are key regulators of bacterial fatty acid synthesis. As essential components of the bacterial lipid metabolic pathway, they are an attractive target for antibacterial drug discovery. We have determined the 1.3 A resolution crystal structure of the beta-ketoacyl-acyl carrier protein synthase II (FabF) from the pathogenic organism Streptococcus pneumoniae. The protein adopts a duplicated betaalphabetaalphabetaalphabetabeta fold, which is characteristic of the thiolase superfamily. The two-fold pseudosymmetry is broken by the presence of distinct insertions in the two halves of the protein. These insertions have evolved to bind the specific substrates of this particular member of the thiolase superfamily. Docking of the pantetheine moiety of the substrate identifies the loop regions involved in substrate binding and indicates roles for specific, conserved residues in the substrate binding tunnel. The active site triad of this superfamily is present in spFabF as His 303, His 337, and Cys 164. Near the active site is an ion pair, Glu 346 and Lys 332, that is conserved in the condensing enzymes but is unusual in our structure in being stabilized by an Mg(2+) ion which interacts with Glu 346. The active site histidines interact asymmetrically with Lys 332, whose positive charge is closer to His 303, and we propose a specific role for the lysine in polarizing the imidazole ring of this histidine. This asymmetry suggests that the two histidines have unequal roles in catalysis and provides new insights into the catalytic mechanisms of these enzymes.  相似文献   

17.
18.
Crystal structures of enoyl-coenzyme A (CoA) isomerase from Bosea sp. PAMC 26642 (BoECI) and enoyl-CoA hydratase from Hymenobacter sp. PAMC 26628 (HyECH) were determined at 2.35 and 2.70 Å resolution, respectively. BoECI and HyECH are members of the crotonase superfamily and are enzymes known to be involved in fatty acid degradation. Structurally, these enzymes are highly similar except for the orientation of their C-terminal helix domain. Analytical ultracentrifugation was performed to determine the oligomerization states of BoECI and HyECH revealing they exist as trimers in solution. However, their putative ligand-binding sites and active site residue compositions are dissimilar. Comparative sequence and structural analysis revealed that the active site of BoECI had one glutamate residue (Glu135), this site is occupied by an aspartate in some ECIs, and the active sites of HyECH had two highly conserved glutamate residues (Glu118 and Glu138). Moreover, HyECH possesses a salt bridge interaction between Glu98 and Arg152 near the active site. This interaction may allow the catalytic Glu118 residue to have a specific conformation for the ECH enzyme reaction. This salt bridge interaction is highly conserved in known bacterial ECH structures and ECI enzymes do not have this type of interaction. Collectively, our comparative sequential and structural studies have provided useful information to distinguish and classify two similar bacterial crotonase superfamily enzymes.  相似文献   

19.
Dehydroquinate dehydratase (DHQD) catalyzes the third reaction in the biosynthetic shikimate pathway. Type I DHQDs are members of the greater aldolase superfamily, a group of enzymes that contain an active site lysine that forms a Schiff base intermediate. Three residues (Glu86, His143, and Lys170 in the Salmonella enterica DHQD) have previously been proposed to form a triad vital for catalysis. While the roles of Lys170 and His143 are well defined—Lys170 forms the Schiff base with the substrate and His143 shuttles protons in multiple steps in the reaction—the role of Glu86 remains poorly characterized. To probe Glu86′s role, Glu86 mutants were generated and subjected to biochemical and structural study. The studies presented here demonstrate that mutant enzymes retain catalytic proficiency, calling into question the previously attributed role of Glu86 in catalysis and suggesting that His143 and Lys170 function as a catalytic dyad. Structures of the Glu86Ala (E86A) mutant in complex with covalently bound reaction intermediate reveal a conformational change of the His143 side chain. This indicates a predominant steric role for Glu86, to maintain the His143 side chain in position consistent with catalysis. The structures also explain why the E86A mutant is optimally active at more acidic conditions than the wild‐type enzyme. In addition, a complex with the reaction product reveals a novel, likely nonproductive, binding mode that suggests a mechanism of competitive product inhibition and a potential strategy for the design of therapeutics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号