首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in PKD2 gene result in autosomal dominant polycystic kidney disease (ADPKD). PKD2 encodes polycystin-2 (TRPP2), which is a homologue of transient receptor potential (TRP) cation channel proteins. Here we identify a novel PKD2 mutation that generates a C-terminal tail-truncated TRPP2 mutant 697fsX with a frameshift resulting in an aberrant 17-amino acid addition after glutamic acid residue 697 from a family showing mild ADPKD symptoms. When recombinantly expressed in HEK293 cells, wild-type (WT) TRPP2 localized at the endoplasmic reticulum (ER) membrane significantly enhanced Ca2+ release from the ER upon muscarinic acetylcholine receptor (mAChR) stimulation. In contrast, 697fsX, which showed a predominant plasma membrane localization characteristic of TRPP2 mutants with C terminus deletion, prominently increased mAChR-activated Ca2+ influx in cells expressing TRPC3 or TRPC7. Coimmunoprecipitation, pulldown assay, and cross-linking experiments revealed a physical association between 697fsX and TRPC3 or TRPC7. 697fsX but not WT TRPP2 elicited a depolarizing shift of reversal potentials and an enhancement of single-channel conductance indicative of altered ion-permeating pore properties of mAChR-activated currents. Importantly, in kidney epithelial LLC-PK1 cells the recombinant 679fsX construct was codistributed with native TRPC3 proteins at the apical membrane area, but the WT construct was distributed in the basolateral membrane and adjacent intracellular areas. Our results suggest that heteromeric cation channels comprised of the TRPP2 mutant and the TRPC3 or TRPC7 protein induce enhanced receptor-activated Ca2+ influx that may lead to dysregulated cell growth in ADPKD.  相似文献   

2.
TRPP2 is a member of the transient receptor potential (TRP) superfamily of cation channels, which is mutated in autosomal dominant polycystic kidney disease (ADPKD). TRPP2 is thought to function with polycystin 1-a large integral protein-as part of a multiprotein complex involved in transducing Ca(2+)-dependent information. TRPP2 has been implicated in various biological functions including cell proliferation, sperm fertilization, mating behaviour, mechanosensation and asymmetric gene expression. Although its function as a Ca(2+)-permeable cation channel is well established, its precise role in the plasma membrane, the endoplasmic reticulum and the cilium is controversial. Recent studies suggest that TRPP2 function is highly dependent on the subcellular compartment of expression, and is regulated by many interactions with adaptor proteins. This review summarizes the most pertinent evidence about the properties of TRPP2 channels, focusing on the compartment-specific functions of mammalian TRPP2.  相似文献   

3.
Mutations in TRPP2 (polycystin-2) cause autosomal dominant polycystic kidney disease (ADPKD), a common genetic disorder characterized by progressive development of fluid-filled cysts in the kidney and other organs. TRPP2 is a Ca(2+)-permeable nonselective cation channel that displays an amazing functional versatility at the cellular level. It has been implicated in the regulation of diverse physiological functions including mechanosensation, cell proliferation, polarity, and apoptosis. TRPP2 localizes to different subcellular compartments, such as the endoplasmic reticulum (ER), the plasma membrane and the primary cilium. The channel appears to have distinct functions in different subcellular compartments. This functional compartmentalization is thought to contribute to the observed versatility and specificity of TRPP2-mediated Ca(2+) signaling. In the primary cilium, TRPP2 has been suggested to function as a mechanosensitive channel that detects fluid flow in the renal tubule lumen, supporting the proposed role of the primary cilium as the unifying pathogenic concept for cystic kidney disease. This review summarizes the known and emerging functions of TRPP2, focusing on the question of how channel function translates into complex morphogenetic programs regulating tubular structure.  相似文献   

4.
Naturally occurring mutations in two separate genes, PKD1 and PKD2, are responsible for the vast majority of all cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common genetic diseases affecting 1 in 1000 Americans. The hallmark of ADPKD is the development of epithelial cysts in the kidney, liver, and pancreas. PKD1 encodes a large plasma membrane protein (PKD1, PC1, or Polycystin-1) with a long extracellular domain and has been speculated to function as an atypical G protein coupled receptor. PKD2 encodes an ion channel of the Transient Receptor Potential superfamily (TRPP2, PKD2, PC2, or Polycystin-2). Despite the identification of these genes more than 20 years ago, the molecular function of their encoded proteins and the mechanism(s) by which mutations in PKD1 and PKD2 cause ADPKD remain elusive. Genetic, biochemical, and functional evidence suggests they form a multiprotein complex present in multiple locations in the cell, including the plasma membrane, endoplasmic reticulum, and the primary cilium. Over the years, numerous interacting proteins have been identified using directed and unbiased approaches, and shown to modulate function, cellular localization, and protein stability and turnover of Polycystins. Delineation of the molecular composition of the Polycystin complex can have a significant impact on understanding their cellular function in health and disease states and on the identification of more specific and effective therapeutic targets.  相似文献   

5.
6.
Wang Q  Yin H  He J  Ye J  Ding F  Wang S  Hu X  Meng Q  Li N 《Gene》2011,476(1-2):38-45
Mutations in the PKD2 gene cause autosomal dominant polycystic kidney disease (ADPKD), a common, inherited disease that frequently leads to end-stage renal disease (ESRD). Swine show substantial similarity to humans physiologically and anatomically, and are therefore a good model system in which to decipher the structure and function of the PKD2 gene and to identify potential therapeutic targets. Here we report the cloning and characterization of the porcine PKD2 cDNA showing that the full-length gene (3370 bases) is highly expressed in kidney, with minimal expression in the liver. RNA interference (RNAi) is a promising tool to enable identification of the essential components necessary for exploitation of the pathway involved in cellular processes. We therefore designed four shRNAs and nine siRNAs targeting the region of the porcine PKD2 gene from exons 3 to 9, which is supposed to be a critical region contributing to the severity of ADPKD. The results from HeLa cells with the dual-luciferase reporter system and porcine kidney cells (LLC-PK1) showed that sh12 could efficiently knock down the PKD2 gene with an efficiency of 51% and P1 and P2 were the most effective siRNAs inhibiting 85% and 77% respectively of PKD2 expression compared with untreated controls. A subsequent functional study of the transient receptor potential polycystic (TRPP) 2 channel protein indicated that the decreased expression of TRPP2 induced by siRNA P1 and P2 could release the arrest of the cell cycle from G0/G1 promoting progression to S and G2 phases. Our data, therefore, provides evidence of potential knock-down target sites in the PKD2 gene and paves the way for the future generation of transgenic ADPKD knock-down animal models.  相似文献   

7.
Glycosylation plays a critical role in the biogenesis and function of membrane proteins. Transient receptor potential channel TRPP2 is a nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease. TRPP2 has been shown to be heavily N-glycosylated, but the glycosylation sites and the biological role of N-linked glycosylation have not been investigated. Here we show, using a combination of mass spectrometry and biochemical approaches, that native TRPP2 is glycosylated at five asparagines in the first extracellular loop. Glycosylation is required for the efficient biogenesis of TRPP2 because mutations of the glycosylated asparagines result in strongly decreased protein expression of the ion channel. Wild-type and N-glycosylation-deficient TRPP2 is degraded in lysosomes, as shown by increased TRPP2 protein levels upon chemical inhibition of lysosomal degradation. In addition, using pharmacological and genetic approaches, we demonstrate that glucosidase II (GII) mediates glycan trimming of TRPP2. The non-catalytic β subunit of glucosidase II (GIIβ) is encoded by PRKCSH, one of the genes causing autosomal dominant polycystic liver disease (ADPLD). The impaired GIIβ-dependent glucose trimming of TRPP2 glycosylation in ADPLD may explain the decreased TRPP2 protein expression in Prkcsh−/− mice and the genetic interaction observed between TRPP2 and PRKCSH in ADPLD. These results highlight the biological importance of N-linked glycosylation and GII-mediated glycan trimming in the control of biogenesis and stability of TRPP2.  相似文献   

8.
The functions of the two proteins defective in autosomal dominant polycystic kidney disease, polycystin-1 and polycystin-2, have not been fully clarified, but it has been hypothesized that they may heterodimerize to form a "polycystin complex" involved in cell adhesion. In this paper, we demonstrate for the first time the existence of a native polycystin complex in mouse kidney tubular cells transgenic for PKD1, non-transgenic kidney cells, and normal adult human kidney. Polycystin-1 is heavily N-glycosylated, and several glycosylated forms of polycystin-1 differing in their sensitivity to endoglycosidase H (Endo H) were found; in contrast, native polycystin-2 was fully Endo H-sensitive. Using highly specific antibodies to both proteins, we show that polycystin-2 associates selectively with two species of full-length polycystin-1, one Endo H-sensitive and the other Endo H-resistant; importantly, the latter could be further enriched in plasma membrane fractions and co-immunoprecipitated with polycystin-2. Finally, a subpopulation of this complex co-localized to the lateral cell borders of PKD1 transgenic kidney cells. These results demonstrate that polycystin-1 and polycystin-2 interact in vivo to form a stable heterodimeric complex and suggest that disruption of this complex is likely to be of primary relevance to the pathogenesis of cyst formation in autosomal dominant polycystic kidney disease.  相似文献   

9.
Polycystic kidney disease (PKD) is a developmental kidney disorder which can be inherited as either an autosomal dominant trait, with an incidence of 1:50 to 1:1000, or as an autosomal recessive trait with an incidence of 1:6,000 to 1:40,000. Three different genes have now been cloned that are associated with mutations that cause PKD. Two of these are linked to the most common forms of the dominant disease while the third is associated with the orpk mouse model of recessive polycystic kidney disease. Advances in understanding the molecular genetics of PKD have been paralleled by new insights into the cellular pathophysiology of cyst formation and progressive enlargement. Current data suggest that a number of PKD proteins may interact in a complex, which when disrupted by mutations in PKD genes may lead to altered epithelial proliferative activity, secretion, and cell matrix biology. The identification of a unique cystic epithelial phenotype presents new opportunities for targeted therapies. These include targeted gene therapy, gene complementation, and specific immunological or pharmacological interruption of growth factor pathways.  相似文献   

10.
Li Q  Dai XQ  Shen PY  Cantiello HF  Karpinski E  Chen XZ 《FEBS letters》2004,576(1-2):231-236
The tandem affinity purification (TAP) procedure was initially developed as a tool for rapid purification of native protein complexes expressed at their natural levels in yeast cells. This purification procedure was also applied to study interactions between soluble proteins in mammalian cells. In order to apply this procedure to mammalian membrane proteins, we created a modified TAP tag expression vector and fused with the PKD2 gene, encoding a membrane cation channel protein, polycystin-2, mutated in 15% of autosomal dominant polycystic kidney disease. We generated epithelial Madin-Darby canine kidney cell line stably expressing TAP-tagged polycystin-2, improved the subsequent steps for membrane protein release and stability, and succeeded in purifying this protein. Using patch clamp electrophysiology, we detected specific polycystin-2 channel activities when the purified protein was reconstituted into a lipid bilayer system. Thus, this modified TAP procedure provides a powerful alternative to functionally characterize membrane proteins, such as ion channels, transporters and receptors, using cell-free system derived from mammalian cells.  相似文献   

11.
Fibrocystin interacts with CAML, a protein involved in Ca2+ signaling   总被引:4,自引:0,他引:4  
The predicted structure of the autosomal recessive polycystic kidney disease protein, fibrocystin, suggests that it may function as a receptor, but its function remains unknown. To understand its function, we searched for proteins that interact with the intracellular C-terminus of fibrocystin using the yeast two-hybrid system. From the screening, we found calcium modulating cyclophilin ligand (CAML), a protein involved in Ca(2+) signaling. Immunofluorescent analysis showed that both proteins are co-localized in the apical membrane, primary cilia, and the basal body of cells derived from the distal nephron Epitope-tagged expression constructs of both proteins were co-immunoprecipitated from COS7 cells. The intracellular C-terminus of fibrocystin interacts with CAML, a protein with an intracellular distribution that is similar to that of PKD2. Fibrocystin may participate in regulation of intracellular Ca(2+) in the distal nephron in a manner similar to PKD1 and PKD2 that are involved in autosomal dominant polycystic kidney disease.  相似文献   

12.
Mutations in pkd2 result in the type 2 form of autosomal dominant polycystic kidney disease, which accounts for approximately 15% of all cases of the disease. PKD2, the protein product of pkd2, belongs to the transient receptor potential superfamily of cation channels, and it can function as a mechanosensitive channel in the primary cilium of kidney cells, an intracellular Ca(2+) release channel in the endoplasmic reticulum, and/or a nonselective cation channel in the plasma membrane. We have identified mDia1/Drf1 (mammalian Diaphanous or Diaphanous-related formin 1 protein) as a PKD2-interacting protein by yeast two-hybrid screen. mDia1 is a member of the RhoA GTPase-binding formin homology protein family that participates in cytoskeletal organization, cytokinesis, and signal transduction. We show that mDia1 and PKD2 interact in native and in transfected cells, and binding is mediated by the cytoplasmic C terminus of PKD2 binding to the mDia1 N terminus. The interaction is more prevalent in dividing cells in which endogenous PKD2 and mDia1 co-localize to the mitotic spindles. RNA interference experiments reveal that endogenous mDia1 knockdown in HeLa cells results in the loss of PKD2 from mitotic spindles and alters intracellular Ca(2+) release. Our results suggest that mDia1 facilitates the movement of PKD2 to a centralized position during cell division and has a positive effect on intracellular Ca(2+) release during mitosis. This may be important to ensure equal segregation of PKD2 to the daughter cell to maintain a necessary level of channel activity. Alternatively, PKD2 channel activity may be important in the cell division process or in cell fate decisions after division.  相似文献   

13.
Mutations in polycystin-1 (PC1) can cause autosomal dominant polycystic kidney disease, which is a leading cause of renal failure. The available evidence suggests that PC1 acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix. PC1 is a large membrane protein that has a long N-terminal extracellular region (about 3000 amino acids) with a multimodular structure including 16 Ig-like polycystic kidney disease (PKD) domains, which are targeted by many naturally occurring missense mutations. Nothing is known about the effects of these mutations on the biophysical properties of PKD domains. Here we investigate the effects of several naturally occurring mutations on the mechanical stability of the first PKD domain of human PC1 (HuPKDd1). We found that several missense mutations alter the mechanical unfolding pathways of HuPKDd1, resulting in distinct mechanical phenotypes. Moreover, we found that these mutations also alter the thermodynamic stability of a structurally homologous archaeal PKD domain. Based on these findings, we hypothesize that missense mutations may cause autosomal dominant polycystic kidney disease by altering the stability of the PC1 ectodomain, thereby perturbing its ability to sense mechanical signals.  相似文献   

14.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the commonest inherited human disorders yet remains relatively unknown to the wider medical, scientific and public audience. ADPKD is characterised by the development of bilateral enlarged kidneys containing multiple fluid-filled cysts and is a leading cause of end-stage renal failure (ESRF). ADPKD is caused by mutations in two genes: PKD1 and PKD2. The protein products of the PKD genes, polycystin-1 and polycystin-2, form a calcium-regulated, calcium-permeable ion channel. The polycystin complex is implicated in regulation of the cell cycle via multiple signal transduction pathways as well as the mechanosensory function of the renal primary cilium, an enigmatic cellular organelle whose role in normal physiology is still poorly understood. Defects in cilial function are now documented in several other human diseases including autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome and many animal models of polycystic kidney disease. Therapeutic trials in these animal models of polycystic kidney disease have identified several promising drugs that ameliorate disease severity. However, elucidation of the function of the polycystins and the primary cilium will have a major impact on our understanding of renal cystic diseases and will create exciting new opportunities for the design of disease-specific therapies.  相似文献   

15.
Bai CX  Kim S  Li WP  Streets AJ  Ong AC  Tsiokas L 《The EMBO journal》2008,27(9):1345-1356
The TRPP2 cation channel is directly responsible for approximately 15% of all cases of autosomal dominant polycystic kidney disease. However, the mechanisms underlying fundamental properties of TRPP2 regulation, such as channel gating and activation, are unknown. We have shown that TRPP2 was activated by EGF and physically interacted with the mammalian diaphanous-related formin 1 (mDia1), a downstream effector of RhoA. Now, we show that mDia1 regulates TRPP2 by specifically blocking its activity at negative but not positive potentials. The voltage-dependent unblock of TRPP2 by mDia1 at positive potentials is mediated through RhoA-induced molecular switching of mDia1 from its autoinhibited state at negative potentials to its activated state at positive potentials. Under physiological resting potentials, EGF activates TRPP2 by releasing the mDia1-dependent block through the activation of RhoA. Our data reveal a new role of mDia1 in the regulation of ion channels and suggest a molecular basis for the voltage-dependent gating of TRP channels.  相似文献   

16.
Naturally occurring mutations in two separate, but interacting loci, pkd1 and pkd2 are responsible for almost all cases of autosomal dominant polycystic kidney disease (ADPKD). ADPKD is one of the most common genetic diseases resulting primarily in the formation of large kidney, liver, and pancreatic cysts. Homozygous deletion of either pkd1 or pkd2 results in embryonic lethality in mice due to kidney and heart defects illustrating their indispensable roles in mammalian development. However, the mechanism by which mutations in these genes cause ADPKD and other developmental defects are unknown. Research in the past several years has revealed that PKD2 has multiple functions depending on its subcellular localization. It forms a receptor-operated, non-selective cation channel in the plasma membrane, a novel intracellular Ca2+ release channel in the endoplasmic reticulum (ER), and a mechanosensitive channel in the primary cilium. This review focuses on the functional compartmentalization of PKD2, its modes of activation, and PKD2-mediated signal transduction.  相似文献   

17.
Transient receptor potential (TRP) polycystin 2 and 3 (TRPP2 and 3) are homologous members of the TRP superfamily of cation channels but have different physiological functions. TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left–right asymmetry development. TRPP3 is reported to implicate in sour tasting in bipolar cells of taste buds of the tongue and in the regulation of pH-sensitive action potential in neurons surrounding the central canal of spinal cord. TRPP3 is present in both excitable and non-excitable cells in various tissues, such as retina, brain, heart, testis, and kidney, but its common and cell type-specific functional characteristics remain largely unknown. In this study, we investigated physical and functional interactions between TRPP3 and α-actinin, an actin-bundling protein known to regulate several types of ion channels. We employed planer lipid bilayer electrophysiology system to study the function of TRPP3 channel that was affinity-purified from Madin–Darby canine kidney cells. Upon reconstitution in bilayer, TRPP3 exhibited cation channel activities that were substantially augmented by α-actinin. The TRPP3-α-actinin association was documented by co-immunoprecipitation using native cells and tissues, yeast two-hybrid, and in vitro binding assays. Further, TRPP3 was abundantly present in mouse brain where it associates with α-actinin-2. Taken together, α-actinin not only attaches TRPP3 to the cytoskeleton but also up-regulates TRPP3 channel function. It remains to be determined whether the TRPP3-α-actinin interaction is relevant to acid sensing and other functions in neuronal and non-neuronal cells.  相似文献   

18.
Mutations of the PKD1 and PKD2 genes, encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively, lead to autosomal dominant polycystic kidney disease. Interestingly, up-regulation or down-regulation of PKD1 or PKD2 leads to polycystic kidney disease in animal models, but their interrelations are not completely understood. We show here that full-length PC1 that interacts with PC2 via a C-terminal coiled-coil domain regulates PC2 expression in vivo and in vitro by down-regulating PC2 expression in a dose-dependent manner. Expression of the pathogenic mutant R4227X, which lacks the C-terminal coiled-coil domain, failed to down-regulate PC2 expression, suggesting that PC1-PC2 interaction is necessary for PC2 regulation. The proteasome and autophagy are two pathways that control protein degradation. Proteins that are not degraded by proteasomes precipitate in the cytoplasm and are transported via histone deacetylase 6 (HDAC6) toward the aggresomes. We found that HDAC6 binds to PC2 and that expression of full-length PC1 accelerates the transport of the HDAC6-PC2 complex toward aggresomes, whereas expression of the R4227X mutant fails to do so. Aggresomes are engulfed by autophagosomes, which then fuse with the lysosome for degradation; this process is also known as autophagy. We have now shown that PC1 overexpression leads to increased degradation of PC2 via autophagy. Interestingly, PC1 does not activate autophagy generally. Thus, we have now uncovered a new pathway suggesting that when PC1 is expressed, PC2 that is not bound to PC1 is directed to aggresomes and subsequently degraded via autophagy, a control mechanism that may play a role in autosomal dominant polycystic kidney disease pathogenesis.  相似文献   

19.
A tale of two tails: ciliary mechanotransduction in ADPKD   总被引:3,自引:0,他引:3  
Autosomal dominant polycystic kidney disease (ADPKD) is a common lethal genetic disorder, characterized by the progressive development of fluid-filled cysts in the kidney, pancreas and liver, and anomalies of the cardiovascular system. Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2) respectively, account for almost all cases of ADPKD. However, the mechanisms by which abnormalities in PKD1 and PKD2 lead to aberrant kidney development remain unknown. Recent progress in the understanding of ADPKD has focused on primary cilia, which act as sensory transducers in renal epithelial cells. New evidence shows that a mechanosensitive signal, cilia bending, activates the PC1-PC2 channel complex. When working properly, this functional complex elicits a transient Ca(2+) influx, which is coupled to the release of Ca(2+) from intracellular stores.  相似文献   

20.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a non-selective calcium channel. PC2 has been found to form oligomers in native tissues suggesting that it may form functional homo- or heterotetramers with other subunits, similar to other TRP channels. Our experiments unexpectedly revealed that PC2 mutant proteins lacking the known C-terminal dimerization domain were still able to form oligomers and co-immunoprecipitate full-length PC2, implying the possible existence of a proximal dimerization domain. Using yeast two-hybrid and biochemical assays, we have mapped an alternative dimerization domain to the N terminus of PC2 (NT2-1-223, L224X). Functional characterization of this domain demonstrated that it was sufficient to induce cyst formation in zebrafish embryos and inhibit PC2 surface currents in mIMCD3 cells probably by a dominant-negative mechanism. In summary, we propose a model for PC2 assembly as a functional tetramer which depends on both C- and N-terminal dimerization domains. These results have significant implications for our understanding of PC2 function and disease pathogenesis in ADPKD and provide a new strategy for studying PC2 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号