首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of nuclear phosphoinositide 3-kinase C2β (PI3K-C2β) was investigated in HL-60 cells blocked by aphidicolin at G1/S boundary and allowed to progress synchronously through the cell cycle. The activity of immunoprecipitated PI3K-C2β in the nuclei and nuclear envelopes showed peak activity at 8 h after release from the G1/S block, which correlates with G2/M phase of the cell cycle. In the nuclei and nuclear envelopes isolated from HL-60 cells at 8 h after release from G1/S block, a significant increase in the level of incorporation of radiolabeled phosphate into phosphatidylinositol 3-phosphate (PtdIns(3)P) was observed with no change in the level of radiolabeled PtdIns(4)P, PtdIns(4,5)P2 and PtdIns(3,4,5)P3. On Western blots, PI3K-C2β revealed a single immunoreactive band of 180 kDa, whereas in the nuclei and nuclear envelopes isolated at 8 h after release, the gel shift of 18 kDa was observed. When nuclear envelopes were treated for 20 min with μ-calpain in vitro, the similar gel shift and increase in PI3K-C2β activity was observed which was completely inhibited by pretreatment with calpain inhibitor calpeptin. The presence of PI3K inhibitor LY 294002 completely abolished the calpain-mediated increase in the activity of PI3K-C2β but did not prevent the gel shift. When HL-60 cells were released from G1/S block in the presence of either calpeptin or LY 294002, the activation of nuclear PI3K-C2β was completely inhibited. These results demonstrate the calpain-mediated activation of the nuclear PI3K-C2β during G2/M phase of the cell cycle in HL-60 cells.  相似文献   

2.
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells induced to differentiate along granulocytic or monocytic lineages. A significant increase in the activity of immunoprecipitated PI3K-C2beta was observed in the nuclei and nuclear envelopes isolated from all-trans-retinoic acid (ATRA)-differentiated cells which was inhibited by the presence of PI3K inhibitor LY 294002. High-performance liquid chromatography analysis of inositol lipids showed an increased incorporation of radiolabelled phosphate in both PtdIns(3)P and PtdIns(3,4,5)P(3) with no changes in the levels of PtdIns(4)P, PtdIns(3,4)P(2) and PtdIns(4,5)P(2). Western blot analysis of the PI3K-C2beta immunoprecipitates with anti-P-Tyr antibody revealed a significant increase in the level of the immunoreactive band corresponding to PI3K-C2beta in the nuclei and nuclear envelopes isolated from ATRA-differentiated cells.  相似文献   

3.
Highly purified liver nuclei incorporated radiolabeled phosphate into phosphatidylinositol 4-phosphate (PtdIns(4)P), PtdIns(4,5)P(2), and PtdIns(3,4,5)P(3). When nuclei were depleted of their membrane, no radiolabeling of PtdIns(3,4,5)P(3) could be detected showing that within the intranuclear region there are no class I phosphoinositide 3-kinases (PI3K)s. In membrane-depleted nuclei harvested 20 h after partial hepatectomy, the incorporation of radiolabel into PtdIns(3)P was observed together with an increase in immunoprecipitable PI3K-C2beta activity, which is sensitive to wortmannin (10 nm) and shows strong preference for PtdIns over PtdIns(4)P as a substrate. On Western blots PI3K-C2beta revealed a single immunoreactive band of 180 kDa, whereas 20 h after partial hepatectomy gel shift of 18 kDa was noticed, suggesting that observed activation of enzyme is achieved by proteolysis. When intact membrane-depleted nuclei were subjected to short term (20 min) exposure to micro-calpain, similar gel shift together with an increase in PI3K-C2beta activity was observed, when compared with the nuclei harvested 20 h after partial hepatectomy. Moreover, the above-mentioned gel shift and increase in PI3K-C2beta activity could be prevented by the calpain inhibitor calpeptin. The data presented in this report show that, in the membrane-depleted nuclei during the compensatory liver growth, there is an increase in PtdIns(3)P formation as a result of PI3K-C2beta activation, which may be a calpain-mediated event.  相似文献   

4.
In the nuclear matrix harvested 20 h after partial hepatectomy, an increase in immunoprecipitable PI3K-C2β activity is observed, which is sensitive to wortmannin (10 Mm) and shows strong preference for PtdIns over PtdIns(4)P as a substrate. On western blots PI3K-C2β revealed a single immunoreactive band of 180 kD, whereas 20 h after partial hepatectomy gel shift of 18 kDa was noticed in the nuclear matrix, suggesting that observed activation of enzyme is achieved by proteolysis. As it is know that PI3K-C2α is associated with nuclear speckles [Didichenko SA, Thelen M. Phosphatidylinositol 3-kinase C2α contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 2001;276:48135-42.], the data presented in this report show that in the nuclear matrix PI3K-C2β is activated during the compensatory liver growth, which clearly demonstrates that different class II PI3K enzymes have different subnuclear localization and therefore might have different intranuclear functions.  相似文献   

5.
In this study, the activity of nuclear phosphatidylinositol-specific phosholipase C (PI-PLC) was investigated in HL-60 cells blocked at G(2)/M phase by the addition of nocodazole, and released into medium as synchronously progressing cells. Two peaks of an increase in the nuclear PI-PLC activities were detected; an early peak reached a maximum at 1 h after release from the nocodazole block, and a second increase was detected at 8.5 h after the release. Immunoprecipitation studies indicated that the increase in the activity was due to the activation of the nuclear PI-PLC-beta(1). Western blot analysis demonstrated no changes in the level of both a and b splicing variants of PI-PLC-beta(1) in the nuclei of cells isolated at either 1 h or 8.5 h after the block. However, an increase in the serine-phosphorylation of PI-PLC-beta(1b) was detected in the nuclei of HL-60 cells isolated at 1 and 8.5 h after the block, and the presence of MEK-inhibitor PD98059 completely inhibited both the serine phosphorylation and the increase in the PI-PLC activities in vitro. The presence of PI-PLC inhibitor prevented the progression of HL-60 cells through the G(1) into S phase of the cell cycle. These results demonstrate that two peaks of nuclear PI-PLC activities, which are due to a PD98059-sensitive phosphorylation of nuclear PLC-beta(1b) on serine, occur at the G(2)/M and late G(1) phase and are necessary for the progression of the cells through the cell cycle.  相似文献   

6.
The biological and pathophysiological significance of class II phosphoinositide 3-kinase enzyme expression currently remains unclear. Using an in vitro scrape wound assay and time-lapse video microscopy, we demonstrate that cell motility is increased in cultures expressing recombinant PI3K-C2beta enzyme. In addition, overexpression of PI3K-C2beta transiently decreased cell adhesion, stimulated the formation of cytoplasmic processes, and decreased the rate of cell proliferation. Consistent with these observations, expression of PI3K-C2beta also decreased expression of alpha4 beta1 integrin subunits. Using asynchronous cultures, we show that endogenous PI3K-C2beta is present in lamellipodia of motile cells. When cells expressing recombinant PI3K-C2beta were plated onto fibronectin, cortical actin staining increased markedly and actin rich lamellipodia and filopodia became evident. Overexpression of a 2xFYVE(Hrs) domain fusion protein abolished this response demonstrating that the effect of PI3K-C2beta on the reorganization of actin filaments is dependent upon PtdIns3P. Finally, overexpression of PI3K-C2beta increased GTP loading of Cdc42. Our data demonstrates for the first time, that PI3K-C2beta plays a regulatory role in cell motility and that the mechanism by which it reorganizes the actin cytoskeleton is dependent upon PtdIns3P production.  相似文献   

7.
Phosphatidylinositol-3-phosphate [PtdIns(3)P] is a key player in early endosomal trafficking and is mainly produced by class III phosphatidylinositol 3-kinase (PI3K). In neurosecretory cells, class II PI3K-C2alpha and its lipid product PtdIns(3)P have recently been shown to play a critical role during neuroexocytosis, suggesting that two distinct pools of PtdIns(3)P might coexist in these cells. However, the precise characterization of this additional pool of PtdIns(3)P remains to be established. Using a selective PtdIns(3)P probe, we have identified a novel PtdIns(3)P-positive pool localized on secretory vesicles, sensitive to PI3K-C2alpha knockdown and relatively resistant to wortmannin treatment. In neurosecretory cells, stimulation of exocytosis promoted a transient albeit large increase in PtdIns(3)P production localized on secretory vesicles sensitive to PI3K-C2alpha knockdown and expression of PI3K-C2alpha catalytically inactive mutant. Using purified chromaffin granules, we found that PtdIns(3)P production is controlled by Ca(2+). We confirmed that PtdIns(3)P production from recombinantly expressed PI3K-C2alpha is indeed regulated by Ca(2+). We provide evidence that a dynamic pool of PtdIns(3)P synthesized by PI3K-C2alpha occurs on secretory vesicles in neurosecretory cells, demonstrating that the activity of a member of the PI3K family is regulated by Ca(2+) in vitro and in living neurosecretory cells.  相似文献   

8.
Recent studies highlight the existence of an autonomous nuclear polyphosphoinositide metabolism related to cellular proliferation and differentiation. However, only few data document the nuclear production of the putative second messengers, the 3-phosphorylated phosphoinositides, by the phosphoinositide 3-kinase (PI3K). In the present paper, we examine whether GTP-binding proteins can directly modulate 3-phosphorylated phosphoinositide metabolism in membrane-free nuclei isolated from pig aorta smooth muscle cells (VSMCs). In vitro PI3K assays performed without the addition of any exogenous substrates revealed that guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) specifically stimulated the nuclear synthesis of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), whereas guanosine 5'-(beta-thio)diphosphate was ineffective. PI3K inhibitors wortmannin and LY294002 prevented GTPgammaS-induced PtdIns(3,4,5)P(3) synthesis. Moreover, pertussis toxin inhibited partially PtdIns(3,4,5)P(3) accumulation, suggesting that nuclear G(i)/G(0) proteins are involved in the activation of PI3K. Immunoblot experiments showed the presence of Galpha(0) proteins in VSMC nuclei. In contrast with previous reports, immunoblots and indirect immunofluorescence failed to detect the p85alpha subunit of the heterodimeric PI3K within VSMC nuclei. By contrast, we have detected the presence of a 117-kDa protein immunologically related to the PI3Kgamma. These results indicate the existence of a G protein-activated PI3K inside VSMC nucleus that might be involved in the control of VSMC proliferation and in the pathogenesis of vascular proliferative disorders.  相似文献   

9.
The phosphatidylinositol (PtdIns) 3-kinase (PI3K) family regulates diverse cellular processes, including cell proliferation, migration, and vesicular trafficking, through catalyzing 3′-phosphorylation of phosphoinositides. In contrast to class I PI3Ks, including p110α and p110β, functional roles of class II PI3Ks, comprising PI3K-C2α, PI3K-C2β, and PI3K-C2γ, are little understood. The lysophospholipid mediator sphingosine 1-phosphate (S1P) plays the important roles in regulating vascular functions, including vascular formation and barrier integrity, via the G-protein-coupled receptors S1P1–3. We studied the roles of PI3K-C2α in S1P-induced endothelial cell (EC) migration and tube formation. S1P stimulated cell migration and activation of Akt, ERK, and Rac1, the latter of which acts as a signaling molecule essential for cell migration and tube formation, via S1P1 in ECs. Knockdown of either PI3K-C2α or class I p110β markedly inhibited S1P-induced migration, lamellipodium formation, and tube formation, whereas that of p110α or Vps34 did not. Only p110β was necessary for S1P-iduced Akt activation, but both PI3K-C2α and p110β were required for Rac1 activation. FRET imaging showed that S1P induced Rac1 activation in both the plasma membrane and PtdIns 3-phosphate (PtdIns(3)P)-enriched endosomes. Knockdown of PI3K-C2α but not p110β markedly reduced PtdIns(3)P-enriched endosomes and suppressed endosomal Rac1 activation. Also, knockdown of PI3K-C2α but not p110β suppressed S1P-induced S1P1 internalization into PtdIns(3)P-enriched endosomes. Finally, pharmacological inhibition of endocytosis suppressed S1P-induced S1P1 internalization, Rac1 activation, migration, and tube formation. These observations indicate that PI3K-C2α plays the crucial role in S1P1 internalization into the intracellular vesicular compartment, Rac1 activation on endosomes, and thereby migration through regulating vesicular trafficking in ECs.  相似文献   

10.
Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2alpha (PI3K-C2alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2alpha is required for acquisition of fusion competence in neurosecretion.  相似文献   

11.
We and others have previously demonstrated the existence of an autonomous nuclear polyphosphoinositide cycle that generates second messengers such as diacylglycerol (DAG), capable of attracting to the nucleus specific protein kinase C (PKC) isoforms (Neri et al. (1998) J. Biol. Chem. 273, 29738-29744). Recently, however, nuclei have also been shown to contain the enzymes responsible for the synthesis of the non-canonical 3-phosphorylated inositides. To clarify a possible role of this peculiar class of inositol lipids we have examined the question of whether nerve growth factor (NGF) induces PKC-zeta nuclear translocation in PC12 cells and whether this translocation is dependent on nuclear phosphatidylinositol 3-kinase (PI 3-K) activity and its product, phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P(3)]. NGF increased both the amount and the enzyme activity of immunoprecipitable PI 3-K in PC12 cell nuclei. Activation of the enzyme, but not its translocation, was blocked by PI 3-K inhibitors wortmannin and LY294002. Treatment of PC12 cells for 9 min with NGF led to an increase in the nuclear levels of PtdIns(3,4,5)P(3). Maximal translocation of PKC-zeta from the cytoplasm to the nucleus (as evaluated by immunoblotting, enzyme activity, and confocal microscopy) occurred after 12 min of exposure to NGF and was completely abrogated by either wortmannin or LY294002. In contrast, these two inhibitors did not block nuclear translocation of the conventional, DAG-sensitive, PKC-alpha. On the other hand, the specific phosphatidylinositol phospholipase C inhibitor, 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, was unable to abrogate nuclear translocation of the DAG-insensitive PKC-zeta. These data suggest that a nuclear increase in PI 3-K activity and PtdIns(3,4,5)P(3) production are necessary for the subsequent nuclear translocation of PKC-zeta. Furthermore, they point to the likelihood that PKC-zeta is a putative nuclear downstream target of PI 3-K during NGF-promoted neural differentiation.-Neri, L. M., Martelli, A. M., Borgatti, P., Colamussi, M. L., Marchisio, M., Capitani, S. Increase in nuclear phosphatidylinositol 3-kinase activity and phosphatidylinositol (3,4, 5) trisphosphate synthesis precede PKC-zeta translocation to the nucleus of NGF-treated PC12 cells.  相似文献   

12.
Immunochemical and immunocytochemical data indicate that nuclei of HL-60 cells contain different enzymes involved in the phosphoinositide cycle, such as PI 3-K and the phosphatidylinositol-specific PLC isoforms beta3, gamma1 and gamma2. These enzymes translocate differently to the nuclear fraction when HL-60 cells are treated with differentiating doses of vitamin D3: PI 3-K translocated progressively to the nucleus in parallel with full differentiation until 96 hours. PLC beta3 increased until 72 hours of treatment and then lowered its intranuclear amount and PLC gamma1 was unchanged at all the examined times. PLC gamma2 nuclear translocation increased progressively until 96 hours of vitamin D3 administration. A fourth PLC isozyme, beta2, present in the cytoplasm of untreated cells, translocates to the cytoplasm after vitamin D3 addition and reaches the highest concentration at the end of monocytic differentiation. Terminal monocytic differentiation was characterized at the nuclear level by high levels of PI 3-K and PLC gamma2 and by the novel expression of PLC beta2. We then observed that the xi isoform of PKC, constitutively present in nuclei of HL-60 cells, translocated to the nucleus when cells were induced to differentiate along the monocytic lineage, but the nuclear translocation of PKC xi was blocked as a consequence of PI 3-K inhibition by Wortmannin. These findings indicate that the main components of the noncanonical and canonical inositol lipid signal transduction pathways, including PI 3-K, PLC beta2 and beta3, PLC gamma2, undergo nuclear translocation and may therefore play a relevant role during monocytic differentiation at the nuclear level. Furthermore, PKC xi nuclear translocation appears to be related to PI 3-K activity.  相似文献   

13.
Phox homology (PX) domains, which have been identified in a variety of proteins involved in cell signaling and membrane trafficking, have been shown to interact with phosphoinositides (PIs) with different affinities and specificities. To elucidate the structural origin of diverse PI specificities of PX domains, we determined the crystal structure of the PX domain from phosphoinositide 3-kinase C2alpha (PI3K-C2alpha), which binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). To delineate the mechanism by which this PX domain interacts with membranes, we measured the membrane binding of the wild type domain and mutants by surface plasmon resonance and monolayer techniques. This PX domain contains a signature PI-binding site that is optimized for PtdIns(4,5)P(2) binding. The membrane binding of the PX domain is initiated by nonspecific electrostatic interactions followed by the membrane penetration of hydrophobic residues. Membrane penetration is specifically enhanced by PtdIns(4,5)P(2). Furthermore, the PX domain displayed significantly higher PtdIns(4,5)P(2) membrane affinity and specificity when compared with the PI3K-C2alpha C2 domain, demonstrating that high affinity PtdIns(4,5)P(2) binding was facilitated by the PX domain in full-length PI3K-C2alpha. Together, these studies provide new structural insight into the diverse PI specificities of PX domains and elucidate the mechanism by which the PI3K-C2alpha PX domain interacts with PtdIns(4,5)P(2)-containing membranes and thereby mediates the membrane recruitment of PI3K-C2alpha.  相似文献   

14.
Previously we demonstrated that the class II phosphoinositide 3-kinase C2beta (PI3K-C2beta) is rapidly recruited to a phosphotyrosine signaling complex containing the activated receptor for epidermal growth factor (EGF). Although this association was shown to be dependent upon specific phosphotyrosine residues present on the EGF receptor, the underlying mechanism remained unclear. In this study the interaction between PI3K-C2beta and the EGF receptor is competitively attenuated by synthetic peptides derived from each of three proline-rich motifs present within the N-terminal region of the PI3K. Further, a series of N-terminal PI3K-C2beta fragments, truncated prior to each proline-rich region, bound the receptor with decreased efficiency. A single proline-rich region was unable to mediate receptor association. Finally, an equivalent N-terminal fragment of PI3K-C2alpha that lacks similar proline-rich motifs was unable to affinity purify the activated EGF receptor from cell lysates. Since these findings revealed that the interaction between the EGF receptor and PI3K-C2beta is indirect, we sought to identify an adaptor molecule that could mediate their association. In addition to the EGF receptor, PI3K-C2beta(2-298) also isolated both Shc and Grb2 from A431 cell lysates. Recombinant Grb2 directly bound PI3K-C2beta in vitro, and this effect was reproduced using either SH3 domain expressed as a glutathione S-transferase (GST) fusion. Interaction with Grb2 dramatically increased the catalytic activity of this PI3K. The relevance of this association was confirmed when PI3K-C2beta was isolated by coimmunoprecipitation with anti-Grb2 antibody from numerous cell lines. Using immobilized, phosphorylated EGF receptor, recombinant PI3K-C2beta was only purified in the presence of Grb2. We conclude that proline-rich motifs within the N terminus of PI3K-C2beta mediate the association of this enzyme with activated EGF receptor and that this interaction involves the Grb2 adaptor.  相似文献   

15.
The class II phosphoinositide 3-kinases (PI3K) PI3K-C2alpha and PI3K-C2beta are two recently identified members of the large PI3K family. Both enzymes are characterized by the presence of a C2 domain at the carboxy terminus and, in vitro, preferentially utilize phosphatidylinositol and phosphatidylinositol 4-monophosphate as lipid substrates. Little is understood about how the catalytic activity of either enzyme is regulated in vivo. In this study, we demonstrate that PI3K-C2alpha and PI3K-C2beta represent two downstream targets of the activated epidermal growth factor (EGF) receptor in human carcinoma-derived A431 cells. Stimulation of quiescent cultures with EGF resulted in the rapid recruitment of both enzymes to a phosphotyrosine signaling complex that contained the EGF receptor and Erb-B2. Ligand addition also induced the appearance of a second, more slowly migrating band of PI3K-C2alpha and PI3K-C2beta immunoreactivity on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Since both PI3K enzymes can utilize Ca(2+) as an essential divalent cation in lipid kinase assays and since the catalytic activity of PI3K-C2alpha is refractory to the inhibitor wortmannin, these properties were used to confirm the recruitment of each PI3K isozyme to the activated EGF receptor complex. To examine this interaction in greater detail, PI3K-C2beta was chosen for further investigation. EGF and platelet-derived growth factor also stimulated the association of PI3K-C2beta with their respective receptors in other cells, including epithelial cells and fibroblasts. The use of EGF receptor mutants and phosphopeptides derived from the EGF receptor and Erb-B2 demonstrated that the interaction with recombinant PI3K-C2beta occurs through E(p)YL/I phosphotyrosine motifs. The N-terminal region of PI3K-C2beta was found to selectively interact with the EGF receptor in vitro, suggesting that it mediates the association of this PI3K with the receptor. However, the mechanism of this interaction remains unclear. We conclude that class II PI3K enzymes may contribute to the generation of 3' phosphoinositides following the activation of polypeptide growth factor receptors in vivo and thus mediate certain aspects of their biological activity.  相似文献   

16.
The class II phosphoinositide 3-kinase (PI3K)-C2beta is recruited to polypeptide growth factor receptors following ligand stimulation. In contrast to the class I A p85/p110 heterodimers, this interaction is dependent upon proline residues present within the N-terminal sequence of the 3-phosphoinositide kinase. However, the mechanism by which PI3K-C2beta catalytic activity is regulated currently remains unknown. In many tumours, increased expression of ErbB receptors confers a poor prognosis. We demonstrate that increased expression of EGFR enhanced its association with PI3K-C2beta following stimulation with EGF. Deletion of the first proline rich region within the N-terminus precluded recruitment of PI3K-C2beta to activated EGFR. Although deletion of the first proline rich motif also rendered the enzyme catalytically inactive, further deletions (residues 1-148 and 1-261) that removed the second and third proline rich motifs increased kinase activity. These data confirm a regulatory role for the N-terminus of class II PI3K enzymes suggesting that catalytic activity is regulated by factors that associate with this region during recruitment to activated growth factor receptors. Using an N-terminal PI3K-C2beta-GST fusion protein, clathrin heavy chain was affinity purified from A431 cell lysates. Association of PI3K-C2beta with clathrin was confirmed by co-immunoprecipitation from cell lysates while intracellular co-localisation of PI3K-C2beta and clathrin was confirmed by confocal microscopy. Our findings demonstrate for the first time that the PI3K-C2beta isoform associates with clathrin and thus provides a link between receptor mediated intracellular signalling and clathrin coated vesicle transport.  相似文献   

17.
While endocytosis attenuates signals from plasma membrane receptors, recent studies suggest that endocytosis also serves as a platform for the compartmentalized activation of cellular signaling pathways. Intersectin (ITSN) is a multidomain scaffolding protein that regulates endocytosis and has the potential to regulate various biochemical pathways through its multiple, modular domains. To address the biological importance of ITSN in regulating cellular signaling pathways versus in endocytosis, we have stably silenced ITSN expression in neuronal cells by using short hairpin RNAs. Decreasing ITSN expression dramatically increased apoptosis in both neuroblastoma cells and primary cortical neurons. Surprisingly, the loss of ITSN did not lead to major defects in the endocytic pathway. Yeast two-hybrid analysis identified class II phosphoinositide 3'-kinase C2beta (PI3K-C2beta) as an ITSN binding protein, suggesting that ITSN may regulate a PI3K-C2beta-AKT survival pathway. ITSN associated with PI3K-C2beta on a subset of endomembrane vesicles and enhanced both basal and growth factor-stimulated PI3K-C2beta activity, resulting in AKT activation. The use of pharmacological inhibitors, dominant negatives, and rescue experiments revealed that PI3K-C2beta and AKT were epistatic to ITSN. This study represents the first demonstration that ITSN, independent of its role in endocytosis, regulates a critical cellular signaling pathway necessary for cell survival.  相似文献   

18.
Phosphoinositide 3-kinases (PI3Ks) have known to be key enzymes activating intracellular signaling molecules when a number of growth factors bind to their cell surface receptors. PI3Ks are divided into three classes (I, II, and III) and enzymes of each class have different tissue-specificities and physiological functions. Class II PI3Ks consist of three isoforms (alpha,beta,gamma). Although the alpha-isoform (PI3K-C2alpha) is considered ubiquitous and preferentially activated by insulin rather than the beta-isoform, the physiological significance of PI3K-C2alpha is poorly understood. The present study aimed to determine whether PI3K-C2alpha is associated with the suppression of apoptotic cell death. Different sense- and antisense oligonucleotides (ODNs) were synthesized based on the sequence of C2 domain of PI3K-C2alpha gene. Transfection of CHO-IR cells with two different antisense ODNs clearly reduced the protein content as well as mRNA levels of PI3K-C2alpha whereas neither the nonspecific mock- nor sense ODNs affected. The decrease of PI3K-C2alpha gene expression was paralleled by cellular changes indicating apoptotic cell death such as nuclear condensation, formation of apoptotic bodies, and DNA fragmentation. PI3K-C2alpha mRNA levels were also reduced when cells were incubated in growth factor-deficient medium. Supplementing growth factors (serum or insulin) into medium lead to an increase of PI3K-C2alpha mRNA levels. This finding strongly suggests that PI3K-C2alpha is a crucial survival factor.  相似文献   

19.
Neutrophil elastase (NE) upregulates the fibrinogen binding activity of the platelet integrin alpha(IIb)beta(3) through proteolysis of the alpha(IIb) subunit. This cleavage allows a strong potentiation of platelet aggregation induced by low concentrations of cathepsin G (CG), another neutrophil serine proteinase. During this activation process, we observed a strong fibrinogen binding and aggregation-dependent phosphatidylinositol 3,4-bis-phosphate (PtdIns(3,4)P(2)) accumulation. PtdIns(3,4)P(2) has been suggested to play a role in the stabilization of platelet aggregation, possibly through the control of a maintained alpha(IIb)beta(3) integrin activation. Here we show that inhibition of phosphoinositide 3-kinase (PI 3-K) by very low concentrations of wortmannin or LY294002 transformed the irreversible platelet aggregation induced by a combination of NE and low concentrations of CG into a reversible aggregation. However, although inhibition of PI 3-K was very efficient in inducing platelet disaggregation, it did not modify the level of alpha(IIb)beta(3) activation as assessed by binding of an activation-dependent antibody. These results indicate that PI 3-K activity can control the irreversibility of platelet aggregation even under conditions where alpha(IIb)beta(3) integrin remains activated.  相似文献   

20.
In this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K) subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, β-hexosaminidase, without affecting the intracellular Ca2+ mobilization. The release of mRFP-tagged neuropeptide-Y, a reporter for the regulated exocytosis, was also decreased in the PI3K-C2α-deficient cells. The release was increased significantly by the expression of the siRNA-resistant version of PI3K-C2α. In wild-type cells, FcεRI stimulation induced the formation of large vesicles, which were associated with CD63, a marker protein of secretory granules. On the vesicles, the existence of PI3K-C2α and PtdIns(3,4)P2 was observed. These results indicated that PI3K-C2α and its product PtdIns(3,4)P2 may play roles in the secretory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号