首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
In Baf-3 cells, IL-3 and IGF-1 both inhibit cell death. These growth factors act at least on two different pathways involved in the inhibition of apoptosis. They both upregulate Bcl-X at the mRNA and protein levels and also activate a pathway which inhibits apoptosis in the absence of protein synthesis. Recently, these two growth factors have been shown to activate the PI3-kinase-AKT pathway which leads to the phosphorylation of the pro-apoptotic Bcl-XL regulator Bad. In this study, we have investigated the role of PI3-kinase in the regulation of Bcl-X expression and in the survival of Baf-3 cells. We show that PI3-kinase activation is involved in the upregulation of Bcl-X mRNA induced by both IL-3 and IGF-1. Moreover, PI3-kinase activity is also necessary for inhibition of apoptosis and caspase regulation by IGF-1 but not IL-3.  相似文献   

4.
Baf-3 cells are dependent on interleukin-3 (IL-3) for their survival and proliferation in culture. To identify anti-apoptotic pathways, we performed a retroviral-insertion mutagenesis on Baf-3 cells and selected mutants that have acquired a long term survival capacity. The phenotype of one mutant, which does not overexpress bcl-x and proliferates in the absence of IL-3, is described. We show that, in this mutant, Akt is constitutively activated leading to FKHRL1 phosphorylation and constitutive glycolytic activity. This pathway is necessary for the mutant to survive following IL-3 starvation but is not sufficient or necessary to protect cells from DNA damage-induced cell death. Indeed, inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in Baf-3 cells does not prevent the ability of IL-3 to protect cells against gamma-irradiation-induced DNA damage. This protective effect of IL-3 rather correlates with the expression of the anti-apoptotic Bcl-x protein. Taken together, these data demonstrate that the PI3K/Akt pathway is sufficient to protect cells from growth factor starvation-induced apoptosis but is not required for IL-3 inhibition of DNA damage-induced cell death.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Bim, the Bcl-2 interacting mediator of cell death, is a member of the BH3-only family of pro-apoptotic proteins. Recent studies have demonstrated that the apoptotic activity of Bim can be regulated through a post-translational mechanism whereby ERK phosphorylation serves as a signal for Bim ubiquitination and proteasomal degradation. In this report, we investigated the signaling pathways leading to Bim phosphorylation in Ba/F3 cells, an interleukin-3 (IL-3)-dependent B-cell line. IL-3 stimulation induced phosphorylation of Bim(EL), one of the predominant isoforms of Bim expressed in cells, at multiple sites, as evidenced by the formation of at least three to four bands by Western blotting that were sensitive to phosphatase digestion. The appearance of multiple, phosphorylated species of Bim(EL) correlated with Akt, and not ERK, activation. The PI3K inhibitor, LY294002, blocked IL-3-stimulated Akt activity and partially blocked Bim(EL) phosphorylation. In vitro kinase assays showed that recombinant Akt could directly phosphorylate a GST-Bim(EL) fusion protein and identified the Akt phosphorylation site in the Bim(EL) domain as Ser(87). Further, we demonstrated that cytokine stimulation promotes Bim(EL) binding to 14-3-3 proteins. Finally, we show that mutation of Ser(87) dramatically increases the apoptotic potency of Bim(EL). We propose that Ser(87) of Bim(EL) is an important regulatory site that is targeted by Akt to attenuate the pro-apoptotic function of Bim(EL), thereby promoting cell survival.  相似文献   

12.
13.
14.
Two distinct signaling pathways regulate the survival of interleukin-3 (IL-3)-dependent hematopoietic progenitors. One originates from the membrane-proximal portion of the cytoplasmic domain of the IL-3 receptor (betac chain), which is shared by IL-3 and granulocyte-macrophage colony-stimulating factor and is involved in the regulation of Bcl-x(L) through activation of STAT5. The other pathway emanates from the distal region of the betac chain and overlaps with downstream signals from constitutively active Ras proteins. Although the latter pathway is indispensable for cell survival, its downstream targets remain largely undefined. Here we show that the expression of Bim, a member of the BH3-only subfamily of cell death activators, is downregulated by IL-3 signaling through either of two major Ras pathways: Raf/mitogen-activated protein kinase and the phosphatidylinositol 3-kinase/mammalian target of rapamycin. Akt/phosphokinase B does not appear to play a significant role in this regulatory cascade. Bim downregulation has important implications for cell survival, since enforced expression of this death activator at levels equivalent to those induced by cytokine withdrawal led to apoptosis even in the presence of IL-3. We conclude that Bim is a pivotal molecule in cytokine regulation of hematopoietic cell survival.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号