首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baker's yeast L-lactate dehydrogenase (flavocytochrome b2) is a typical flavodehydrogenase, in that it accepts two electrons from the substrate but has a monoelectronic acceptor. Yet it forms a red semiquinone [Capeillère Blandin et al. Eur. J. Biochem. 54, 549--566 (1975)] and it is shown in this paper that it forms a reversible covalent complex with sulfite (Kd = 1.4 muM). This complex can be observed by difference spectroscopy and provides a convenient tool for visualizing the flavin chromophore, usually hidden behind the intense heme absorbance. A number of anions (D-lactate, oxalate and pyruvate) are inhibitors of the enzymatic reaction and induce spectral perturbations of the flavin spectrum. It is concluded that probably two positive charges exist at the active site: one which stabilizes the red semiquinone and one which attracts organic anions and sulfite. It is also concluded that the correlation between reactivity with sulfite and reactivity with oxygen among flavo-proteins may not be as general as previously proposed [Massey et al. J. Biol. Chem. 244, 3999--4006 (1969)].  相似文献   

2.
Yeast flavocytochrome b 2 tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b 2. Each subunit of the soluble tetrameric enzyme consists of an N terminal b 5-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b 2 domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b 2 functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b 5-like domain is fused to proteins carrying other redox functions.  相似文献   

3.
The family of FMN-dependent, alpha-hydroxy acid-oxidizing enzymes catalyzes substrate dehydrogenation by a mechanism the first step of which is abstraction of the substrate alpha-proton (so-called carbanion mechanism). For flavocytochrome b2 and lactate oxidase, it was shown that once on the enzyme this proton is lost only slowly to the solvent (Lederer F, 1984, In: Bray RC, Engel PC, Mayhew SG, eds, Flavins & flavoproteins, Berlin: Walter de Gruyter & Co., pp 513-526; Urban P, Lederer F, 1985, J Biol Chem 260:11115-11122). This suggested the occurrence of a pKa increase of the catalytic histidine upon enzyme reduction by substrate. For flavocytochrome b2, the crystal structure indicated 2 possible origins for the stabilization of the imidazolium form of His 373: either a network of hydrogen bonds involving His 373, Tyr 254, flavin N5 and O4, a heme propionate, and solvent molecules, and/or electrostatic interactions with Asp 282 and with the reduced cofactor N1 anion. In this work, we probe the effect of the hydrogen bond network at the active site by studying proton exchange with solvent for 2 mutants: Y254F and the recombinant flavodehydrogenase domain, in which this network should be disrupted. The rate of proton exchange, as determined by intermolecular hydrogen transfer experiments, appears identical in the flavodehydrogenase domain and the wild-type enzyme, whereas it is about 3-fold faster in the Y254F mutant. It thus appears that specific hydrogen bonds to the solvent do not play a major role in stabilizing the acid form of His 373 in reduced flavocytochrome b2. Removal of the Y254 phenol group induces a pKa drop of about half a pH unit for His 373 in the reduced enzyme. Even then, the rate of exchange of the imidazolium proton with solvent is still lower by several orders of magnitude than that of a normally ionizing histidine. Other factors must then also contribute to the pKa increase, such as the electrostatic interactions with D282 and the anionic reduced cofactor, as suggested by the crystal structure.  相似文献   

4.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

5.
In a previous work, we have described the tryptic cleavage of yeast flavocytochrome b2 into its two functional domains: a cytochrome b2 core and a flavodehydrogenase. The lactate dehydrogenase efficiency of the latter was, however, dramatically low, only about 1% that of intact flavocytochrome b2. Our present study concerns a new flavodehydrogenase derivative of Hansenula anomala flavocytochrome b2 which spontaneously dissociates from the cytochrome domain when the polypeptide bridge connecting them is cleaved by Staphylococcus aureus V8 protease I. This flavodehydrogenase was purified and some of its functional and structural properties were studied. It presents an exceptionally high lactate dehydrogenase activity, about 80% that of flavocytochrome b2. This result clearly demonstrates that the cytochrome domain is not necessary for the lactate dehydrogenase function and suggests an autonomous folding for both domains. Our results are discussed in terms of 'gene fusion'.  相似文献   

6.
We have examined the kinetics of NADPH oxidase activation induced by arachidonic acid or SDS in a cell-free system using mixtures of recombinant Phox proteins and purified flavocytochrome b-245. Activation of oxidase activity required the simultaneous presence of p47(phox), flavocytochrome b-245, and the anionic amphiphile. The activation of electron transfer reactions was much more rapid when iodonitrotetrazolium violet was used as electron acceptor than when oxygen alone was the acceptor. We propose that this difference represents an intermediate activation state of NADPH oxidase in which electron flow can proceed from NADPH to enzyme flavin (and hence to iodonitrotetrazolium violet) but not from flavin to heme (or not between the hemes). A model for NADPH oxidase activation is presented that is consistent with these observations.  相似文献   

7.
Cénas N  Lê KH  Terrier M  Lederer F 《Biochemistry》2007,46(15):4661-4670
Saccharomyces cerevisiae flavocytochrome b2 (L-lactate:cytochrome c oxido reductase, EC 1.1.2.3) is a homotetramer, with FMN and protoheme IX binding on separate domains. The flavin-binding domains form the enzyme tetrameric core, while the cytochrome b2 domains appear to be mobile around a hinge region (Xia, Z. X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 867-863). The enzyme catalyzes electron transfer from L-lactate to cytochrome c, or to nonphysiological acceptors such as ferricyanide, via FMN and heme b2. The kinetics of this multistep reaction are complex. In order to clarify some of its aspects, the tetrameric FMN-binding domain (FDH domain) has been independently expressed in Escherichia coli (Balme, A., Brunt, C. E., Pallister, R., Chapman, S. K., and Reid, G. A. (1995) Biochem. J. 309, 601-605). We present here an additional characterization of this domain. In our hands, it has essentially the same ferricyanide reductase activity as the holo-enzyme. The comparison of the steady-state kinetics with ferricyanide as acceptor and of the pre-steady-state kinetics of flavin reduction, as well as the kinetic isotope effects of the reactions using L-2-[2H]lactate, indicates that flavin reduction is the limiting step in lactate oxidation. During the oxidation of the reduced FDH domain by ferricyanide, the oxidation of the semiquinone is much faster than the oxidation of two-electron-reduced flavin. This order of reactivity is reversed during flavin to heme b2 transfer in the holo-enzyme. Potentiometric studies of the protein yielded a standard redox potential for FMN at pH 7.0, E(o)7, of -81 mV, a value practically identical to the published value of -90 mV for FMN in holo-flavocytochrome b2. However, as expected from the kinetics of the oxidative half-reaction, the FDH domain was characterized by a significantly destabilized flavin semiquinone state compared with holo-enzyme, with a semiquinone formation constant K of 1.25-0.64 vs 33.5, respectively (Tegoni, M., Silvestrini, M. C., Guigliarelli, B., Asso, M., and Bertrand, P. (1998) Biochemistry, 37, 12761-12771). As in the holo-enzyme, the semiquinone state in the FDH domain is significantly stabilized by the reaction product, pyruvate. We also studied the inhibition exerted in the steady and pre steady states by the reaction product pyruvate and by anions (bromide, chloride, phosphate, acetate), with respect to both flavin reduction and reoxidation. The results indicate that these compounds bind to the oxidized and the two-electron-reduced forms of the FDH domain, and that excess L-lactate also binds to the two-electron-reduced form. These findings point to the existence of a common or strongly overlapping binding site. A comparison of the effect of the anions on WT and R289K holo-flavocytochromes b2 indicates that invariant R289 belongs to this site. According to literature data, it must also be present in other members of the family of L-2-hydroxy acid-oxidizing enzymes.  相似文献   

8.
Cameron MD  Aust SD 《Biochemistry》2000,39(44):13595-13601
The flavin cofactor within cellobiose dehydrogenase (CDH) was found to be responsible for the reduction of all electron acceptors tested. This includes cytochrome c, the reduction of which has been reported to be by the reduced heme of CDH. The heme group was shown to affect the reactivity and activation energy with respect to individual electron acceptors, but the heme group was not involved in the direct transfer of electrons to substrate. A complicated interaction was found to exist between the flavin and heme of cellobiose dehydrogenase. The addition of electron acceptors was shown to increase the rate of flavin reduction and the electron transfer rate between the flavin and heme. All electron acceptors tested appeared to be reduced by the flavin domain. The addition of ferric iron eliminated the flavin radical present in reduced CDH, as detected by low temperature ESR spectroscopy, while it increased the flavin radical ESR signal in the independent flavin domain, more commonly referred to as cellobiose:quinone oxidoreductase (CBQR). Conversely, no radical was detected with either CDH or CBQR upon the addition of methyl-1,4-benzoquinone. Similar reaction rates and activation energies were determined for methyl-1,4-benzoquinone with both CDH and CBQR, whereas the rate of iron reduction by CDH was five times higher than by CBQR, and its activation energy was 38 kJ/mol lower than that of CBQR. Oxygen, which may be reduced by either one or two electrons, was found to behave like a two-electron acceptor. Superoxide production was found only upon the inclusion of iron. Additionally, information is presented indicating that the site of substrate reduction may be in the cleft between the flavin and heme domains.  相似文献   

9.
The kinetics of reduction of Chromatium vinosum flavocytochrome c heme subunit by exogenous flavin neutral semiquinones generated by laser flash photolysis have been investigated. Unlike the holoprotein, the isolated heme subunit was appreciably reactive with lumiflavin neutral semiquinone. The measured rate constant for the reaction (2.7 X 10(7) M-1 S-1) was comparable to those of c-type cytochromes having similar redox potentials. The ionic strength dependence of the reaction with FMN neutral radical indicated that the heme subunit had a small negative charge at the site of reduction. Taken together, these results suggest that the active site of the heme subunit is buried on complexation with the flavin subunit in the holoprotein. Horse cytochrome c formed a strong complex with Chromatium, but not Chlorobium, flavocytochrome c. Possible physiological electron acceptors such as HiPIP, cytochrome c', and cytochrome c-555 apparently did not bind to the flavocytochromes c. The rate constant for reduction by lumiflavin radical of horse cytochrome c complexed to flavocytochrome c was about twofold smaller than for reduction of horse cytochrome c alone. Flavocytochrome c was itself unreactive with exogenous flavin semiquinones. The ionic strength dependence of the reduction of the complex by FMN radical was also smaller than for horse cytochrome c in the absence of flavocytochrome c. Sulfite, which forms an adduct with the protein-bound FAD (FAD is bound in an 8-alpha-S-cysteinyl linkage), did not affect the reduction of horse cytochrome c in its complex with flavocytochrome c. We conclude that horse cytochrome c is reduced directly by exogenous flavins in its complex with flavocytochrome c, although the kinetics are slightly modified. These results are not unlike observations made with complexes of mitochondrial cytochrome c with cytochrome oxidase or cytochrome b5.  相似文献   

10.
Spectroscopic and potentiometric measurements have been carried out, at room temperature, during anaerobic titrations of Hansenula anomala L-lactate cytochrome c oxidoreductase (or flavocytochrome b2) both in the presence and in the absence of pyruvate (the physiological reaction product). Under the same conditions, the flavin spectral contribution was estimated and the flavosemiquinone proportion was directly determined by electron paramagnetic resonance measurements. In the present study, we show the visible light absorption and paramagnetic characteristics of the flavin radical at 18 degrees C and also the dramatic effect of pyruvate on the redox potential of each monoelectronic couple of the flavin. Thermodynamic stabilization of the semiquinone form, in the presence of pyruvate, is interpreted as a mode of regulation of flavocytochrome b2 activity. Taking into account that analogous controls have been observed with two other flavoenzymes belonging to this class of dehydrogenases/one-electron transferases, we suggest that redox potential modulation could be a type of regulation effective for the whole class of enzymes in which a semiquinone is an obligate intermediate.  相似文献   

11.
Phanerochaete chrysosporium cellobiose oxidoreductase (CBOR) comprises two redox domains, one containing flavin adenine dinucleotide (FAD) and the other protoheme. It reduces both two-electron acceptors, including molecular oxygen, and one-electron acceptors, including transition metal complexes and cytochrome c. If the latter reacts with the flavin, the reduced heme b acts merely as a redox buffer, but if with the b heme, enzyme action involves a true electron transfer chain. Intact CBOR fully reduced with cellobiose, CBOR partially reduced by ascorbate, and isolated ascorbate-reduced heme domain, all transfer electrons at similar rates to cytochrome c. Reduction of cationic one-electron acceptors via the heme group supports an electron transfer chain model. Analogous reactions with natural one-electron acceptors can promote Fenton chemistry, which may explain evolutionary retention of the heme domain and the enzyme's unique character among secreted sugar dehydrogenases.  相似文献   

12.
This study is part of a series aimed at the characterization of individual steps of electron transfer taking place between prosthetic flavin, heme b2, heme c within active sites and complexes. After rapid mixing of ferricytochrome c with partially reduced flavocytochrome b2, the reaction is followed at the level of two reactants, cytochrome b2 and cytochrome c. In order to define the proper reactivity of flavosemiquinone, conditions under which this form is highly stabilized (presence of pyruvate) have been chosen. With the help of simulations, it has been possible to characterize a rapid step of electron transfer from cytochrome b2 to cytochrome c within a complex (at approx. 70% saturation) and a slow step k = 5 s-1 assigned to cytochrome b2 reduction by flavosemiquinone within the active site of the pyruvate-liganded enzyme.  相似文献   

13.
According to a model proposed by Gervais, M, Groudinsky, O., Risler, Y. and Labeyrie, F. ((1977) Biochem. Biophys. Res. Commun. 77, 1543-1551) flavocytochrome b2 is composed of a central flavodehydrogenase entity of 4 X 45 kDa to which are attached four cytochrome b2 globules of approx. 11 kDa that are released after proteolysis of the connective loops. A possible inherent mobility of the latter with functional significance was suspected. Proton NMR spectra at 400 MHz of the isolated and of the flavodehydrogenase-bound ferricytochrome b2 units have been compared. In the ranges downfield of +12 ppm and upfield from -4 ppm, where hyperfine-shifted heme proton resonances reside, the chemical shifts are identical for the two forms, but the linewidths are markedly broader for flavocytochrome b2. The linewidths of three heme resonances, a methyl at +19 ppm, two single protons at -6 and -8 ppm (most probably from one vinyl) and an unassigned line at -2.4 ppm, all increase by a factor of about 4. Since, in the present case, linewidths are controlled mainly by proton/proton dipolar relaxations which are caused by molecular tumbling, a change in linewidths of about 15 would be expected if the cytochrome b2 globule had no free motion relative to the flavodehydrogenase domain. The present results thus support the previous hypothesis that such a relative mobility, of unknown correlation time and amplitude, actually exists.  相似文献   

14.
In the O2- generating flavocytochrome b, the membrane-bound component of the neutrophil NADPH oxidase, electrons are transported from NADPH to O2 in the following sequence: NADPH --> FAD --> heme b -->O2. Although p-iodonitrotetrazolium (INT) has frequently been used as a probe of the diaphorase activity of the neutrophil flavocytochrome b, the propensity of its radical to interact reversibly with O2 led us to question its specificity. This study was undertaken to reexamine the interaction of INT with the redox components of the neutrophil flavocytochrome b. Two series of inhibitors were used, namely the flavin analog 5-deaza FAD and the heme inhibitors bipyridyl and benzylimidazole. The following results indicate that INT reacts preferentially with the hemes rather than with the FAD redox center of flavocytochrome b and is not therefore a specific probe of the diaphorase activity of flavocytochrome b. First, in anaerobiosis, reduced heme b in activated membranes was reoxidized by INT as efficiently as by O2 even in the presence of concentrations of 5-deaza FAD which fully inhibited the NADPH oxidase activity. Second, the titration curve of dithionite-reduced heme b in neutrophil membranes obtained by oxidation with increasing amounts of INT was strictly superimposable on that of dithionite-reduced hemin. Third, INT competitively inhibited the O2 uptake by the activated NADPH oxidase in a cell-free system. Finally, the heme inhibitor bipyridyl competitively inhibited the reduction of INT in anaerobiosis, and the oxygen uptake in aerobiosis.  相似文献   

15.
M C Walker  G Tollin 《Biochemistry》1992,31(10):2798-2805
Intramolecular electron transfer between the heme and flavin cofactors of flavocytochrome b2 is an obligatory step during the enzymatic oxidation of L-lactate and subsequent reduction of cytochrome c. Previous kinetic studies using both steady-state and transient methods have suggested that such intramolecular electron transfer is inhibited when pyruvate, the two-electron oxidation product of L-lactate, is bound at the active site of Hansenula anomala flavocytochrome b2. In contrast to this, we have recently demonstrated using laser flash photolysis that intramolecular electron transfer could be observed in the flavocytochrome b2 from Saccharomyces cerevisiae only when pyruvate was present [Walker, M., & Tollin, G. (1991) Biochemistry 30, 5546-5555], despite a large thermodynamic driving force of 100 mV and apparently favorable cofactor geometry as indicated by crystallographic studies. In the present study, we have utilized laser flash photolysis to investigate intramolecular electron transfer in the flavocytochrome b2 from H. anomala in an effort to address these apparently conflicting interpretations with respect to the influence of pyruvate on enzyme properties. The results obtained are closely comparable to those we reported using the protein from Saccharomyces. Thus, in the absence of pyruvate, bimolecular reduction of both the heme and FMN cofactors by deazaflavin semiquinone occurs (k approximately 10(9) M-1 s-1), followed by a protein concentration dependent intermolecular electron transfer from the semiquinone form of the FMN cofactor to the heme (k approximately 10(7) M-1 s-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A Desbois  M Tegoni  M Gervais  M Lutz 《Biochemistry》1989,28(20):8011-8022
Resonance Raman spectra of Hansenula anomala L-lactate:cytochrome c oxidoreductase (or flavocytochrome b2), of its cytochrome b2 core, and of a bis(imidazole) iron-protoporphyrin complex were obtained at the Soret preresonance from the oxidized and reduced forms. Raman contributions from both the isoalloxazine ring of flavin mononucleotide (FMN) and the heme b2 were observed in the spectra of oxidized flavocytochrome b2. Raman diagrams showing frequency differences of selected FMN modes between aqueous and proteic environments were drawn for various flavoproteins. These diagrams were closely similar for flavocytochrome b2 and for flavodoxins. This showed that the FMN structure must be very similar in both types of proteins, despite their very different proteic pockets. However, the electron density at this macrocycle was found to be higher in flavocytochrome b2 than in these electron transferases. No significant difference was observed between the heme structures in flavocytochrome b2 and in cytochrome b2 core. The porphyrin center-N(pyrrole) distances in the oxidized and reduced heme b2 were estimated to be 1.990 and 2.022 A from frequencies of porphyrin skeletal modes, respectively. The frequency of the vinyl stretching mode of protoporphyrin was found to be very affected in resonance Raman spectra of flavocytochrome b2 and of cytochrome b2 core (1634-1636 cm-1) relative to those observed in the spectra of iron-protoporphyrin [bis(imidazole)] complexes (1620 cm-1). These specificities were interpreted as reflecting a near coplanarity of the vinyl groups of heme b2 with the pyrrole rings to which they are attached. The low-frequency regions of resonance Raman indicated that the iron atoms of the four hemes b2 are in the porphyrin plane whatever their oxidation state. The histidine-Fe-histidine symmetric stretching mode was located at 205 cm-1 in the spectra of flavocytochrome b2 and of cytochrome b2 core. It was insensitive to the iron oxidation state and indicated strong Fe-His bonds in both states.  相似文献   

17.
The oxidation-reduction properties of free cytochrome b2 isolated by controlled proteolysis from flavocytochrome b2, i.e. the flavodehydrogenase-bound cytochrome b2, were investigated by using stopped-flow spectrophotometry. The rapid kinetics of the reduction of cytochrome b2 by flavocytochrome b2 in the presence of L-lactate are reported. The self-exchange rate constant between reduced cytochrome b2 bound to the flavodehydrogenase and free cytochrome b2 was determined to be 10(5) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. The specific electron-transfer reaction between reduced cytochrome b2 and cytochrome c was also studied, giving an apparent second-order rate constant of 10(7) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. This electron-exchange rate is slightly modulated by ionic strength, following the Debye-Hückel relationship with a charge factor Z1Z2 = -1.9. Comparison of these data with those for the reduction of cytochrome c by flavodehydrogenase-bound cytochrome b2 [Capeillère-Blandin (1982) Eur. J. Biochem. 128, 533-542] leads to the conclusion that the intramolecular electron exchange between haem b2 and haem c within the reaction complex occurs at a rate very similar to that determined experimentally in presence of the flavodehydrogenase domain. The low reaction rate observed with free cytochrome b2 is ascribed to the low stability of the reaction complex formed between free cytochrome b2 and cytochrome c.  相似文献   

18.
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.  相似文献   

19.
Yeast flavocytochrome b2 (Fcb2) is an l-lactate:cytochrome c oxidoreductase in the mitochondrial intermembrane space participating in cellular respiration. Each enzyme subunit consists of a cytochrome b5-like heme domain and a flavodehydrogenase (FDH) domain. In the Fcb2 crystal structure, the heme domain is mobile relative to the tetrameric FDH core in one out of two subunits. The monoclonal antibody B2B4, elicited against the holoenzyme, recognizes only the native heme domain in the holoenzyme. When bound, it suppresses the intramolecular electron transfer from flavin to heme b2, hence cytochrome c reduction. We report here the crystal structure of the heme domain in complex with the Fab at 2.7 Å resolution. The Fab epitope on the heme domain includes the two exposed propionate groups of the heme, which are hidden in the interface between the domains in the complete subunit. The structure discloses an unexpected plasticity of Fcb2 in the neighborhood of the heme cavity, in which the heme has rotated. The epitope overlaps with the docking area of the FDH domain onto the heme domain, indicating that the antibody displaces the heme domain in a movement of large amplitude. We suggest that the binding sites on the heme domain of cytochrome c and of the FDH domain also overlap and therefore that cytochrome c binding also requires the heme domain to move away from the FDH domain, so as to allow electron transfer between the two hemes. Based on this hypothesis, we propose a possible model of the Fcb2·cytochrome c complex. Interestingly, this model shares similarity with that of the cytochrome b5·cytochrome c complex, in which cytochrome c binds to the surface around the exposed heme edge of cytochrome b5. The present results therefore support the idea that the heme domain mobility is an inherent component of the Fcb2 functioning.  相似文献   

20.
The protomeric chain of Hansenula anomala flavocytochrome b2 was previously shown to be built as the covalent association of two functional domains: an L-lactate dehydrogenase domain and a cytochrome c reductase domain, joined together by a proteolytically sensitive zone. This paper concerns the specific cleavage of this latter zone with a H. anomala proteinase(s) preparation and the purification of the resulting L-lactate dehydrogenase moiety of the molecule with at least 25% recovery, (i.e. one order of magnitude more than for the previously published method). A preliminary characterization of this dehydrogenase domain indicates that it is a tetramer (Mr = 4 x 39000) containing FMN as expected and not heme. It has high L-lactate:ferricyanide oxidoreductase activity (about 70% that of the whole flavocytochrome b2) and the same Km for L(+)-lactate as flavocytochrome b2, but it has no L-lactate:cytochrome c oxidoreductase activity. Its flavin semiquinone is stabilized in the presence of pyruvate as in flavocytochrome b2. The subcellular origin of the H. anomala proteinase in the preparation has not yet been elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号