首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three anaerobic bacteria, isolated from the ceca of rats and mice, converted, through a concerted mechanism, beta-muricholic acid, the predominant bile acid in germfree rats, into omega-muricholic acid. One isolate was a Eubacterium lentum strain; the second and third isolates were tentatively identified as atypical Fusobacterium sp. strains. The conversion of beta-muricholic acid into omega-muricholic acid proceeded in two steps: E. lentum oxidized the 6 beta-hydroxyl group of beta-muricholic acid to a 6-oxo group, which was reduced by either of the two other species to a 6 alpha-hydroxyl group, yielding omega-muricholic acid. This transformation occurred both in vitro and in gnotobiotic rats. Monoassociation of germfree rats with the E. lentum strain gave rise to an unidentified fecal bile acid, probably a derivative of beta-muricholic acid having a double bond in the side chain.  相似文献   

2.
Plate diffusion assay as a rapid method for dosimetry of mutagens.   总被引:2,自引:2,他引:0       下载免费PDF全文
In the feces of conventional rats, the amount of omega-muricholic and hyodeoxycholic acids vary according to the diet. To understand this phenomenon, we investigated the bacterial formation of these bile acids. The present paper reports the first isolation, from conventional rat feces, of a strain of Clostridium group III which transforms beta-muricholic acid, the main bile acid in germfree rats, into omega-muricholic acid.  相似文献   

3.
The effects of bile duct ligation on bile acid and cholesterol metabolism were examined in male Wistar strain rats. Quantitative and qualitative changes of bile acids and cholesterol in serum and urine occurred; beta-muricholic acid predominantly increased in serum and urine and the ratio of urinary cholic acid and beta-muricholic acid changed from about 5:3 on day 1 to about 1:8 on day 5 under biliary obstruction. The form of the increased urinary bile acids was mainly taurine-conjugated and partly sulfated. Under conditions of bile duct ligation on day 5, 14C-labeled 3 beta-hydroxy-5-cholenoic, lithocholic, and chenodeoxycholic acids were intragastrically administered to the rats after pretreatment with antibiotics and the metabolites of these three acids were investigated. 3 beta-Hydroxy-5-cholenoic acid was most efficiently converted to beta-muricholic acid. The present study strongly suggested the presence of an alternative metabolic pathway induced by bile duct ligation, which caused the change in composition of urinary bile acids, and especially the marked increase in beta-muricholic acid formation. A possible alternative pathway for bile acid biosynthesis under biliary obstruction in rats is postulated.  相似文献   

4.
The well-known bile acid analysis technique used by us and others (Grundy, Ahrens, and Miettinen. 1965. J. Lipid Res. 6:397-410) does not allow for the detection of hyodeoxycholic acid, a product of quantitative importance in rodent feces. Using updated methodology, it was established that hyodeoxycholic acid and omega-muricholic acid, both apparent conversion products of beta-muricholic acid, occur in apppreciable amounts in intestinal contents and feces of conventional Wistar type Lobund rats. In conventional rats, these bile acids comprise about 50% of fecal bile acids; they are not found in intestinal contents or feces of germfree rats. Others have demonstrated that hyodeoxycholic acid if formed by combined action of gut flora and liver. A new method for the separation of conjugated and free bile acids in biological samples was developed. Results with this method confirmed the total conjugation of bile acids in the germfree rat, and the almost total deconjugation that takes place in the cecum of the conventional rat.  相似文献   

5.
The formation of alpha-muricholic acid and beta-muricholic acid from chenodeoxycholic acid was comparatively investigated in livers isolated from normal, streptozotocin-diabetic, and insulin-treated diabetic rats. [24-14C]Chenodeoxycholic acid or [24-14C]alpha-muricholic acid was infused into the perfused livers. There was no difference in biliary excretion of 14C among the different groups of rats after the infusion of each 14C-labelled bile acid. Biliary [14C]bile acids were chromatographed on a thin-layer plate and the distribution of radioactivity on the plate was measured by radioscanning. In the diabetic group, the formation ratio of alpha-muricholic acid and beta-muricholic acid from [24-14C]chenodeoxycholic acid and also that of beta-muricholic acid from [24-14C]alpha-muricholic acid were much smaller than in the normal group. Treatment of the diabetic group with insulin cancelled the difference in the infusion of each [24-14C]bile acid. The results indicate that not only 6 beta-hydroxylation of chenodeoxycholic acid to alpha-muricholic acid but also 7-epimerization of the latter acid to beta-muricholic acid is suppressed in an insulin-deficient state in rats.  相似文献   

6.
The isolated livers from normal, streptozotocin-diabetic, and insulin-treated diabetic rats were perfused without and with infused 7 alpha-hydroxycholesterol. Biliary bile acids were extracted and analysed by gas chromatography. In each liver group, total bile acid concentration was more than four times greater with infused 7 alpha-hydroxycholesterol than without the sterol. Without infused 7 alpha-hydroxycholesterol, bile acids in the control group were composed mainly of beta-muricholic acid and to a lesser extent of cholic acid. In the diabetic group, the ratio between these two bile acids reversed. The ratio tended to be normalized by treatment with insulin. With infused 7 alpha-hydroxycholesterol, the control group secreted chenodeoxycholic acid at a considerable higher percentage besides major beta-muricholic acid and minor cholic acid. In the diabetic group, the ratio between the latter two bile acids reversed as was the case with the endogenous secretion, while the percentage of chenodeoxycholic acid remained then unchanged. The diminished percentage of beta-muricholic acid in the diabetic group was increased two times by treatment with insulin.  相似文献   

7.
The metabolism of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid was studied in the bile fistula rats and in preparations from rat liver homogenates. In the bile fistula rats, the main products were chenodeoxycholic acid, alpha-muricholic acid, and beta-muricholic acid. Only small amounts of cholic acid were formed. Incubations of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid with microsomes and NADPH yielded as the main product 3 alpha, 6 beta, 7 alpha-trihydroxy-5 beta-cholestanoic acid. The formation of small amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid was shown. The major product in incubations of 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid with microsomes and the 100,000 g supernatant fluid fortified with ATP was identified as 3 alpha, 7 alpha, 24 xi-trihydroxy-5 beta-cholestanoic acid. This compound was converted into chenodeoxycholic acid and its metabolites in the bile fistula rat.  相似文献   

8.
Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of [4-14C]-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.  相似文献   

9.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

10.
Bile acid contents in isolated rat hepatocytes were determined by gas-liquid chromatography-mass spectrometry-selected ion monitoring with the use of deuterium-labeled internal standards. This allowed us first to monitor the actual amounts of not only major but also minor bile acid components present with sufficient sensitivity and specificity and to follow the changes of individual bile acids in cultured rat hepatocytes simultaneously. In freshly isolated rat hepatocytes, cholic and beta-muricholic acids were the major components, comprising 35 and 46% of the total bile acids, respectively. These two bile acids were found to be most actively synthesized during the first 2 h of incubation and continued to increase thereafter for up to 6 h (the end of the period studied). In contrast, chenodeoxycholic and alpha-muricholic acids, which are the precursors of beta-muricholic acid, showed slight increases only in the first hour of incubation and decreased thereafter. These results suggested that the conversion to beta-muricholic acid from chenodeoxycholic acid via alpha-muricholic acid occurred rapidly in cultured rat hepatocytes. The secondary bile acids such as deoxycholic, hyodeoxycholic, and 3 alpha, 12 beta-dihydroxy-5 beta-cholanoic acids declined steadily from the start of incubation, which supported the findings that further hydroxylation of these dihydroxy bile acids occurs in rat liver.  相似文献   

11.
From the rat intestinal microflora we isolated a gram-positive rod, termed HDCA-1, that is a member of a not previously described genomic species and that is able to transform the 3alpha,6beta, 7beta-trihydroxy bile acid beta-muricholic acid into hyodeoxycholic acid (3alpha,6alpha-dihydroxy acid) by dehydroxylation of the 7beta-hydroxy group and epimerization of the 6beta-hydroxy group into a 6alpha-hydroxy group. Other bile acids that were also transformed into hyodeoxycholic acid were hyocholic acid (3alpha, 6alpha,7alpha-trihydroxy acid), alpha-muricholic acid (3alpha,6beta, 7alpha-trihydroxy acid), and omega-muricholic acid (3alpha,6alpha, 7beta-trihydroxy acid). The strain HDCA-1 could not be grown unless a nonconjugated 7-hydroxylated bile acid and an unidentified growth factor produced by a Ruminococcus productus strain that was also isolated from the intestinal microflora were added to the culture medium. Germfree rats selectively associated with the strain HDCA-1 plus a bile acid-deconjugating strain and the growth factor-producing R. productus strain converted beta-muricholic acid almost completely into hyodeoxycholic acid.  相似文献   

12.
This study investigated whether beta-muricholic acid, a natural trihydroxy hydrophilic bile acid of rodents, acts as a biliary cholesterol-desaturating agent to prevent cholesterol gallstones and if it facilitates the dissolution of gallstones compared with ursodeoxycholic acid (UDCA). For gallstone prevention study, gallstone-susceptible male C57L mice were fed 8 weeks with a lithogenic diet (2% cholesterol and 0.5% cholic acid) with or without 0.5% UDCA or beta-muricholic acid. For gallstone dissolution study, additional groups of mice that have formed gallstones were fed chow with or without 0.5% beta-muricholic acid or UDCA for 8 weeks. One hundred percent of mice fed the lithogenic diet formed cholesterol gallstones. Addition of beta-muricholic acid and UDCA decreased gallstone prevalence to 20% and 50% through significantly reducing biliary secretion rate, saturation index, and intestinal absorption of cholesterol, as well as inducing phase boundary shift and an enlarged Region E that prevented the transition of cholesterol from its liquid crystalline phase to solid crystals and stones. Eight weeks of beta-muricholic acid and UDCA administration produced complete gallstone dissolution rates of 100% and 60% compared with the chow (10%). We conclude that beta-muricholic acid is more effective than UDCA in treating or preventing diet-induced or experimental cholesterol gallstones in mice.  相似文献   

13.
[3H8]Leukotriene C4 was administered to germfree rats and to conventional rats having a bile duct cannula. Several radioactive metabolites were isolated. Two polar biliary metabolites from conventional rats were identified as N-acetyl-omega-carboxy-leukotriene E4 and N-acetyl-omega-hydroxy-leukotriene E4. A polar fecal metabolite from germfree rats was found to be N-acetyl-omega-carboxy-leukotriene E4. Chemical identities were established using UV spectroscopy and cochromatographies with authentic compounds in several HPLC systems. The fecal metabolite was further characterized by reductive desulfurization followed by gas-liquid-radiochromatography. The yield of the two biliary metabolites was 5% of the administered tritium after three hours and the yield of fecal N-acetyl-omega-carboxy-leukotriene E4 was 3.5% after three days.  相似文献   

14.
This study was carried out in order to exclude the possibility that streptozotocin (STZ) as such may be directly responsible for the alteration in the metabolism of bile acids. The STZ-diabetic rats had a higher percentage of cholic acid and a lower percentage of chenodeoxycholic acid and beta-muricholic acid compared to the controls. Although the rats were given STZ, yet there was no alteration in the bile acid pattern when they were protected against diabetes by simultaneous administration of nicotinamide. Nicotinamide itself had no influence on the composition of bile acids. Treatment of the STZ-diabetic rats with insulin cancelled the altered composition of bile acids partially. From these results it became clear that the alteration of the bile-acid metabolism in the STZ-treated rats was caused not by a direct effect of STZ itself but by an absolutely or relatively insulin-deficient state induced by STZ.  相似文献   

15.
Normal and alloxan-diabetic male mice (Crj-ICR) were fed a diet containing 0.5% cholesterol for 5 and 10 weeks, and gallbladder bile was analyzed for cholesterol, phospholipids and bile acids, feces for sterols and bile acids, and plasma and liver for cholesterol, phospholipids, and triglycerides. Normal mice developed no gallstones but the diabetic mice developed cholesterol gallstones with an incidence of 70% by 5 weeks and 80% by 10 weeks after feeding of the cholesterol diet. Diabetic mice fed the ordinary diet also developed stones (23%) by 10 weeks. In the diabetic mice, the gallbladder was enlarged about threefold, and biliary lipid concentration, diet intake, and fecal excretion of sterols and bile acids increased but body weight decreased. Cholic acid and beta-muricholic acid comprised over 40% each of the total biliary bile acids in normal mice, but cholic acid increased to about 80% and beta-muricholic acid decreased to a few percent in the diabetic mice. Fecal excretion of bile acids increased after cholesterol feeding in both normal and diabetic mice, but the increased bile acid in the normal animals was beta-muricholic acid and that in the diabetic mice was deoxycholic acid. The mice that developed gallstones showed a marked increase in biliary cholesterol value and decreases in gallbladder bile and bile acid concentration, but no difference in biliary and fecal bile acid composition, bile acid synthesis, fecal sterols, or plasma and liver lipid levels. Cholesterol absorption was increased in the diabetic mice when examined by plasma 14C/3H ratio and fecal 14C-labeled sterol excretion after a single oral administration of [14C]cholesterol and a simultaneous intravenous injection of [3H]cholesterol. These data led to the conclusion that cholesterol gallstones developed in alloxan-diabetic mice fed excess cholesterol, due to the hyperphagia and the enhancement of cholesterol absorption caused by increases in the synthesis and secretion of cholic acid.  相似文献   

16.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

17.
The effect of microbiological deconjugation of bile acids on total bile acid and neutral sterol fecal excretion by adult male rats has been studied. A screening method utilizing mice allowed selection of a Clostridium perfringens type A strain, which accelerated cholesterol catabolism in mice. When this species of bacteria was associated with germfree rats, the fecal bile acids were excreted as free bile acids (deconjugated), however the quantities of bile acids excreted were not increased compared with those of germfree rats. Conventional rats excrete twice as much bile acids (all deconjugated) as do the germfree and C. perfringens-associated rats. It is, therefore, unlikely that the microbiological deconjugation of bile acids is responsible for the increased fecal excretion of bile acids seen in conventional rats. The C. perfringens-associated rats excreted identical kinds and quantities of fecal neutral sterols as did the germfree rats.  相似文献   

18.
Germ-free mice were orally inoculated with human intestinal 7alpha-dehydroxylating bacterial strains to evaluate their ability to transform bile acids in vivo. Three weeks after inoculation of the bacteria, cecal bile acids were examined. Among free-form bile acids, only beta-muricholic acid was detected in the cecal contents of gnotobiotic mice associated with Bacteroides distasonis strain K-5. No secondary bile acid was observed in the cecal contents of any of the gnotobiotic mice associated with 7alpha-dehydroxylating bacteria, Clostridium species strain TO-931 or Eubacterium species strain 36S.  相似文献   

19.
Milligram amounts of [3 beta-3H]lithocholic (3 alpha-hydroxy-5 beta-cholanoic) acid were administered by intravenous infusion to rats prepared with a biliary fistula. Analysis of sequential bile samples by thin-layer chromatography (TLC) demonstrated that lithocholic acid glucuronide was present in bile throughout the course of the experiments and that its secretion rate paralleled that of total isotope secretion. Initial confirmation of the identity of this metabolite was obtained by the recovery of labeled lithocholic acid after beta-glucuronidase hydrolysis of bile samples. For detailed analysis of biliary metabolites of [3H]lithocholic acid, pooled bile samples from infused rats were subjected to reversed-phase chromatography and four major labeled peaks were isolated. After complete deconjugation, the two major compounds in the combined first two peaks were identified as murideoxycholic (3 alpha, 6 beta-dihydroxy-5 beta-cholanoic) and beta-muricholic (3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoic) acids and the third peak was identified as taurolithocholic acid. The major component of the fourth peak, after isolation, derivatization (to the methyl ester acetate), and purification by high pressure liquid chromatography (HPLC), was positively identified by proton nuclear magnetic resonance as lithocholic acid 3 alpha-O-(beta-D-glucuronide). These studies have shown, for the first time, that lithocholic acid glucuronide is a product of in vivo hepatic metabolism of lithocholic acid in the rat.  相似文献   

20.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号