共查询到20条相似文献,搜索用时 0 毫秒
1.
Verspohl EJ Johannwille B Waheed A Neye H 《Canadian journal of physiology and pharmacology》2002,80(6):562-568
The effects of purinergic agonists on insulin release are controversial in the literature. In our studies (mainly using INS-1 cells, but also using rat pancreatic islets), ATP had a dual effect on insulin release depending on the ATP concentration: increasing insulin release (EC50 approximately/= 0.0032 microM) and inhibiting insulin release (EC50 approximately/= 0.32 microM) at both 5.6 and 8.3 mM glucose. This is compatible with the view that either two different receptors are involved, or the cells desensitize and (or) the effect of an inhibitory degradation product such as adenosine (ectonucleotidase effect) emerges. The same dual effects of ATP on insulin release were obtained using rat pancreatic islets instead of INS-1 cells. ADPbetaS, which is less degradable than ATP and rather specific for P2Y1 receptors, had a dual effect on insulin release at 8.3 mM glucose: stimulatory (EC50 approximately/= 0.02 microM) and inhibitory (EC50 approximately/= 0.32 microM). The effectiveness of this compound indicates the possible involvement of a P2Y1 receptor. 2-Methylthio-ATP exhibited an insulinotropic effect at very high concentrations (EC50 approximately/= 15 microM at 8.3 mM glucose). This indicated that distinct P2X or the P2Y1 receptor may be involved in these insulin-secreting cells. UTP increased insulin release (EC50 approximately/= 2 microM) very weakly, indicating that a P2U receptor (P2X3 or possibly a P2Y2 or P2Y4) are not likely to be involved. Suramin (50 microM) antagonized the insulinotropic effect of ATP (0.01 microM) and UTP (0.32 microM). Since suramin is not selective, the data indicated that various P2X and P2Y receptors may be involved. PPADS (100 microM), a P2X and P2Y1,4,6 receptor antagonist, was ineffective using either low or high concentrations of ATP and ADPbetaS, which combined with the suramin data hints at a P2Y receptor effect of the compounds. Adenosine inhibited insulin release in a concentration-dependent manner. DPCPX (100 microM), an adenosine (A1) receptor antagonist, inhibited the inhibitory effects of both adenosine and of high concentrations of ATP. Adenosine deaminase (1 U/mL) abolished the inhibitory effect of high ATP concentrations, indicating the involvement of the degradation product adenosine. Repetitive addition of ATP did not desensitize the stimulatory effect of ATP. U-73122 (2 microM), a PLC inhibitor, abolished the ATP effect at low concentrations. The data indicate that ATP at low concentrations is effective via P2Y receptors and the PLC-system and not via P2X receptors; it inhibits insulin release at high concentrations by being metabolized to adenosine. 相似文献
2.
Ma Z Zhang S Turk J Ramanadham S 《American journal of physiology. Endocrinology and metabolism》2002,282(4):E820-E833
Accumulating evidence suggests that the cytosolic calcium-independent phospholipase A(2) (iPLA(2)beta) manifests a signaling role in insulin-secreting (INS-1) beta-cells. Earlier, we reported that insulin-secretory responses to cAMP-elevating agents are amplified in iPLA(2)beta-overexpressing INS-1 cells (Ma Z, Ramanadham S, Bohrer A, Wohltmann M, Zhang S, and Turk J. J Biol Chem 276: 13198-13208, 2001). Here, immunofluorescence, immunoaffinity, and enzymatic activity analyses are used to examine distribution of iPLA(2)beta in stimulated INS-1 cells in greater detail. Overexpression of iPLA(2)beta in INS-1 cells leads to increased accumulation of iPLA(2)beta in the nuclear fraction. Increasing glucose concentrations alone results in modest increases in insulin secretion, relative to parental cells, and in nuclear accumulation of the iPLA(2)beta protein. In contrast, cAMP-elevating agents induce robust increases in insulin secretion and in time-dependent nuclear accumulation of iPLA(2)beta fluorescence, which is reflected by increases in nuclear iPLA(2)beta protein content and specific enzymatic activity. The stimulated effects are significantly attenuated in the presence of cell-permeable inhibitors of protein phosphorylation and glycosylation. These findings suggest that conditions that amplify insulin secretion promote translocation of beta-cell iPLA(2)beta to the nuclei, where it may serve a crucial signaling role. 相似文献
3.
Bollheimer LC Wrede CE Rockmann F Ottinger I Schölmerich J Buettner R 《Biochemical and biophysical research communications》2005,330(1):327-332
The rat insulinoma cell line INS-1 is the most commonly used clonal cell model in pancreatic beta-cell research. Considering the multihormonality of many insulinomas we examined as to how INS-1 cells comply with the notion of resembling a pure beta-cell line. Glucagon immunoassays revealed that INS-1 cells secrete glucagon in a similar range as islets. By immunohistochemistry we detected a cytoplasmic glucagon signal in INS-1 cells which colocalized with C-peptide. Cellular content of preproglucagon-mRNA and glucagon protein in INS-1 cells was less than two percent of the respective values in islets, which probably reflects differences in the intracellular metabolism and/or secretory pathways. Taken together, it is obvious that INS-1 cells do not represent an exclusively insulin producing beta-cell line. 相似文献
4.
Vian Azzu Charles Affourtit Eamon P. Breen Nadeene Parker Martin D. Brand 《BBA》2008,1777(10):1378-1383
Uncoupling protein 2 (UCP2) regulates glucose-stimulated insulin secretion in pancreatic beta-cells. UCP2 content, measured by calibrated immunoblot in INS-1E insulinoma cells (a pancreatic beta-cell model) grown in RPMI medium, and INS-1E mitochondria, was 2.0 ng/million cells (7.9 ng/mg mitochondrial protein). UCP2 content was lower in cells incubated without glutamine and higher in cells incubated with 20 mM glucose, and varied from 1.0-4.4 ng/million cells (2.7-14.5 ng/mg mitochondrial protein). This dynamic response to nutrients was achieved by varied expression rates against a background of a very short UCP2 protein half-life of about 1 h. 相似文献
5.
The trafficking of alpha 1-antitrypsin,a post-Golgi secretory pathway marker,in INS-1 pancreatic beta cells 总被引:1,自引:0,他引:1
A sulfated alpha1-antitrypsin (AAT), thought to be a default secretory pathway marker, is not stored in secretory granules when expressed in neuroendocrine PC12 cells. In search of a constitutive secretory pathway marker for pancreatic beta cells, we produced INS-1 cells stably expressing wild-type AAT. Because newly synthesized AAT arrives very rapidly in the Golgi complex, kinetics alone cannot resolve AAT release via distinct secretory pathways, although most AAT is secreted within a few hours and virtually none is stored in mature granules. Nevertheless, from pulse-chase analyses, a major fraction of newly synthesized AAT transiently exhibits secretogogue-stimulated exocytosis and localizes within immature secretory granules (ISGs). This trafficking occurs without detectable AAT polymerization or binding to lipid rafts. Remarkably, in a manner not requiring its glycans, all of the newly synthesized AAT is then removed from granules during their maturation, leading mostly to constitutive-like AAT secretion, whereas a smaller fraction (approximately 10%) goes on to lysosomes. Secretogogue-stimulated ISG exocytosis reroutes newly synthesized AAT directly into the medium and prevents its arrival in lysosomes. These data are most consistent with the idea that soluble AAT abundantly enters ISGs and then is efficiently relocated to the endosomal system, from which many molecules undergo constitutive-like secretion while a smaller fraction advances to lysosomes. 相似文献
6.
Nishi Y Fujimoto S Sasaki M Mukai E Sato H Sato Y Tahara Y Nakamura Y Inagaki N 《The Biochemical journal》2011,435(2):421-430
In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells. 相似文献
7.
Glucose and GLP-1 stimulate cAMP production via distinct adenylyl cyclases in INS-1E insulinoma cells 下载免费PDF全文
Ramos LS Zippin JH Kamenetsky M Buck J Levin LR 《The Journal of general physiology》2008,132(3):329-338
In β cells, both glucose and hormones, such as GLP-1, stimulate production of the second messenger cAMP, but glucose and GLP-1 elicit distinct cellular responses. We now show in INS-1E insulinoma cells that glucose and GLP-1 produce cAMP with distinct kinetics via different adenylyl cyclases. GLP-1 induces a rapid cAMP signal mediated by G protein–responsive transmembrane adenylyl cyclases (tmAC). In contrast, glucose elicits a delayed cAMP rise mediated by bicarbonate, calcium, and ATP-sensitive soluble adenylyl cyclase (sAC). This glucose-induced, sAC-dependent cAMP rise is dependent upon calcium influx and is responsible for the glucose-induced activation of the mitogen-activated protein kinase (ERK1/2) pathway. These results demonstrate that sAC-generated and tmAC-generated cAMP define distinct signaling cascades. 相似文献
8.
9.
10.
Linssen MM van Raalte DH Toonen EJ Alkema W van der Zon GC Dokter WH Diamant M Guigas B Ouwens DM 《Cellular signalling》2011,23(11):1708-1715
Glucocorticoids (GCs), such as prednisolone (PRED), are widely prescribed anti-inflammatory drugs, but their use may induce glucose intolerance and diabetes. GC-induced beta cell dysfunction contributes to these diabetogenic effects through mechanisms that remain to be elucidated. In this study, we hypothesized that activation of the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress could be one of the underlying mechanisms involved in GC-induced beta cell dysfunction. We report here that PRED did not affect basal insulin release but time-dependently inhibited glucose-stimulated insulin secretion in INS-1E cells. PRED treatment also decreased both PDX1 and insulin expression, leading to a marked reduction in cellular insulin content. These PRED-induced detrimental effects were found to be prevented by prior treatment with the glucocorticoid receptor (GR) antagonist RU486 and associated with activation of two of the three branches of the UPR. Indeed, PRED induced a GR-mediated activation of both ATF6 and IRE1/XBP1 pathways but was found to reduce the phosphorylation of PERK and its downstream substrate eIF2α. These modulations of ER stress pathways were accompanied by upregulation of calpain 10 and increased cleaved caspase 3, indicating that long term exposure to PRED ultimately promotes apoptosis. Taken together, our data suggest that the inhibition of insulin biosynthesis by PRED in the insulin-secreting INS-1E cells results, at least in part, from a GR-mediated impairment in ER homeostasis which may lead to apoptotic cell death. 相似文献
11.
M. Skrzypski M. Kakkassery S. Mergler C. Grötzinger N. Khajavi M. Sassek D. Szczepankiewicz B. Wiedenmann K.W. Nowak M.Z. Strowski 《FEBS letters》2013
Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca2+- and Mg2+-permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca2+ and insulin secretion in INS-1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca2+ and enhanced glucose-stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca2+]i and insulin secretion in INS-1E cells. 相似文献
12.
Orecná M Hafko R Bacová Z Podskocová J Chorvát D Strbák V 《Physiological research / Academia Scientiarum Bohemoslovaca》2008,57(6):935-945
Objective of this study was to characterize osmotically-induced insulin secretion in two tumor cell lines. We compared response of freshly isolated rat pancreatic islets and INS-1 and INS-1E tumor cell lines to high glucose, 30 % hypotonic medium and 20 % hypertonic medium. In Ca(2+)-containing medium glucose induced insulin release in all three cell types. Hypotonicity induced insulin secretion from islets and INS-1 cells but not from INS-1E cells, in which secretion was inhibited despite similar increase in cell volume in both cell types. GdCl(3) (100 micromol/l) did not affect insulin response from INS-1E cells to hypotonic challenge. Hypertonic medium inhibited glucose-induced insulin secretion from islets but not from tumor cells. Noradrenaline (1 micromol/l) inhibited glucose-induced but not swelling-induced insulin secretion from INS-1 cells. Surprisingly, perifusion with Ca(2+)-depleted medium showed distinct secretory response of INS-1E cells to hypotonicity while that of INS-1 cells was partially inhibited. Functioning glucose-induced insulin secretion is not sufficient prerequisite for hypotonicity-induced response in INS-1E cells suggesting that swelling-induced exocytosis is not essential step in the mechanism mediating glucose-induced insulin secretion. Both cell lines are resistant to inhibitory effect of hyperosmolarity on glucose-induced insulin secretion. Response of INS-1E cells to hypotonicity is inhibited by the presence of Ca(2+) in medium. 相似文献
13.
Martin Jakab Michael Grundbichler Julius Benicky Andrea Ravasio Sabine Chwatal Sabine Schmidt Vladimir Strbak Johannes Fürst Markus Paulmichl Markus Ritter 《Cellular physiology and biochemistry》2006,18(1-3):21-34
The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents. 相似文献
14.
Spitzenberger F Pietropaolo S Verkade P Habermann B Lacas-Gervais S Mziaut H Pietropaolo M Solimena M 《The Journal of biological chemistry》2003,278(28):26166-26173
Islet cell autoantigen of 69 kDa (ICA69) is a cytosolic protein of still unknown function. Involvement of ICA69 in neurosecretion has been suggested by the impairment of acetylcholine release at neuromuscular junctions upon mutation of its homologue gene ric-19 in C. elegans. In this study, we have further investigated the localization of ICA69 in neurons and insulinoma INS-1 cells. ICA69 was enriched in the perinuclear region, whereas it did not co-localize with markers of synaptic vesicles/synaptic-like microvesicles. Confocal microscopy and subcellular fractionation in INS-1 cells showed co-localization of ICA69 with markers of the Golgi complex and, to a minor extent, with immature insulin-containing secretory granules. The association of ICA69 with these organelles was confirmed by immunoelectron microscopy. Virtually no ICA69 immunogold labeling was observed on secretory granules near the plasma membrane, suggesting that ICA69 dissociates from secretory granule membranes during their maturation. In silico sequence and structural analyses revealed that the N-terminal region of ICA69 is similar to the region of arfaptins that interacts with ARF1, a small GTPase involved in vesicle budding at the Golgi complex and immature secretory granules. ICA69 is therefore a novel arfaptin-related protein that is likely to play a role in membrane trafficking at the Golgi complex and immature secretory granules in neurosecretory cells. 相似文献
15.
16.
Fengfei Li Bijun Chen Ling Li Min Zha S. Zhou Tongzhi Wu M. G. Bachem Zilin Sun 《Journal of molecular histology》2014,45(3):321-327
In type 2 diabetes mellitus, pancreatic stellate cells (PSCs) are present within and surrounding pancreatic islets and may cause progressive fibrosis and deterioration of pancreatic beta cell function. However, it is unknown whether pancreatic beta cells influence the biological behavior of PSCs. In the present study, we examined the impact of pancreatic beta cells on the proliferation, migration and extracellular matrix (ECM) production of PSCs. PSCs were treated with conditioned media from INS-1 cells (supernatant, SN). Although the proliferation of PSCs incubated with INS-1-SN was increased compared to control, INS-1-SN treatment induced matrix metalloproteinase-2 activity and reduced the production of ECM and TGF-β1. In addition, PSCs treated with INS-1-SN reduced the secretion of cytokines that are known to mediate pancreatic beta cell death, such as FADD, Fas, IFN-γ, IL-1, TNF-α, and TRAIL. Our findings suggest that pancreatic beta cells may ameliorate islet fibrosis and the progression of islet dysfunction. 相似文献
17.
18.