首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cervical cancer is a critically malignant tumor with the second mortality of females worldwide. MicroRNAs (miRNAs) are short but regulatory non-coding RNAs playing a pivotal role in many biological processes including tumorigenesis. However, the exact role of miR-140-3p in cervical cancer remains to be elucidated. Here we identified that miR-140-3p was significantly reduced in cervical cancer tissues by comprehensive analysis of TCGA data, hinting that higher expression level of miR-140-3p predicted a good clinical prognosis. Quantitative real-time PCR (RT-qPCR) assay was performed to confirm the negative correlation between miR-140-3p expression level and human cervical cancer tissues as well as various cervical cancer cell lines. To clarify the certain role of miR-140-3p, forced expression by microRNA mimics was applied in Caski and C33A cells, showing that miR-140-3p overexpression significantly impeded the proliferation of cervical cancer cells by cell count kit (CCK-8) assay. Western blot analysis of cell cycle-related proteins Cyclin A, Cyclin B1 and Cyclin D1 have further confirmed the cell cycle arrest was induced by the ectopic expression of miR-140-3p. Annexin-V based FACS analysis also found the simultaneous appearance of early apoptotic cell population in miR-140-3p overexpression cells. The protein level of BCL-2 was attenuated in accompany with elevated Bax and Cleaved caspase-3 protein, indicating miR-140-3p overexpression induced early apoptosis. Mechanistically, we demonstrated that miR-140-3p could target the 3′UTR of RRM2 which has been proved to be highly involved in the onset of cancer. Furthermore, upregulation of miR-140-3p and RRM2 failed to inhibit the proliferation of human cervical cancer cells, revealing that RRM2 served as the target downstream gene of miR-140-3p abolishing its ability as a tumor suppressor. Overall, we figured out the new role of miR-140-3p in cervical cancer and concluded that miR-140-3p was a candidate of cancer control in preclinical.  相似文献   

2.
目的观察高危型人乳头瘤病毒(HPV)感染与宫颈癌中miR-218表达的关系。方法收集2015年6月至2018年12月我院手术切除的宫颈癌组织并检测高危型HPV感染情况和miR-218表达量。培养HPV16阳性的SiHa细胞株并进行分组,阴性对照(NC)组转染NC模拟物、miR-218组转染miR-218模拟物,检测两组细胞凋亡率、B淋巴细胞瘤-2基因(Bcl-2)、Bcl-2相关x蛋白(Bax)、Bcl-2相互作用细胞死亡介导因子(Bim)、含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)-9、Caspase-3的mRNA表达量及凋亡通路分子c-Jun氨基末端激酶(JNK)、c-Jun基因(c-Jun)、磷脂酰肌醇3-激酶(PI3K)、蛋白激酶B(AKT)、哺乳动物雷帕霉素靶蛋白(mTOR)的蛋白表达量。结果高危型HPV阳性的宫颈癌组织中miR-218表达量减少。转染24 h后,miR-218组细胞凋亡率、细胞中Bax、Bim、Caspase-9、Caspase-3的mRNA表达量及JNK、c-Jun的蛋白表达量均明显高于NC组,而细胞中Bcl-2的mRNA表达量及PI3K、AKT、mTOR的蛋白表达量均低于NC组,差异均有统计学意义(均P<0.05)。结论miR-218在高危型HPV感染的宫颈癌组织中表达减少。增加miR-218的表达能够促进HPV感染宫颈癌细胞的凋亡。该调控作用与JNK/c-Jun通路的激活及PI3K/AKT/mTOR通路的抑制有关。  相似文献   

3.
4.
张潇飞  宋鹤  刘静  张文建  闫晓红  李辉  王宁 《遗传》2017,39(4):333-345
miR-17-92基因簇在哺乳动物的许多生理和病理过程中发挥重要作用。本实验室前期研究发现,miR-17-92基因簇促进鸡前脂肪细胞的增殖,但其作用机制尚不清楚。为了揭示miR-17-92基因簇促进鸡前脂肪细胞增殖的作用机制,本研究采用CCK-8细胞增殖检测方法分析干扰ZFPM2对前脂肪细胞的影响,结果发现,干扰ZFPM2能显著促进鸡前脂肪细胞的增殖(P<0.01);与CCK-8分析结果相一致,干扰ZFPM2可致使细胞增殖标志基因PCNA、Ki67、Cyclin D1的mRNA表达量明显升高(P<0.01或P<0.05)。进一步对鸡ZFPM2基因进行生物信息学分析,发现该基因mRNA的3′UTR有两个区域存在miR-17-92基因簇4个成员(miR-17-5p、miR-20a、miR-19a及miR-19b)的潜在结合位点。为验证miR-17-92基因簇是否靶作用于鸡ZFPM2基因,构建了鸡ZFPM2基因3′UTR区的荧光素酶报告基因载体(野生型)(psi-CHECK2-ZFPM2-3′UTR-WT)及其突变型的荧光素酶报告基因载体(psi-CHECK2-ZFPM2-3′UTR-MUT)。报告基因活性分析显示,过表达mi-17-92基因簇能极显著地抑制野生型ZFPM2的报告基因活性(P<0.01);转染miR-17-5p、miR-20a及miR-19a的抑制剂均能显著地提高野生型ZFPM2报告基因的活性(P<0.01或 P<0.05),但这些抑制剂对突变型ZFPM2报告基因的活性无明显影响。qRT-PCR分析发现,miR-17-5p、miR-19a及miR-20a的抑制剂能显著提高内源性ZFPM2基因mRNA的表达水平(P<0.01或P<0.05)。共转染分析发现,尽管差异不显著,但miR-17-5p和miR-19a的抑制剂均倾向于降低ZFPM2干扰片段的促细胞增殖作用。本研究结果表明:miR-17-92基因簇成员miR-17-5p、miR-20a、miR-19a及miR-19b靶作用于ZFPM2;miR-17-92基因簇至少部分通过抑制ZFPM2基因表达从而促进鸡前脂肪细胞的增殖。  相似文献   

5.
MicroRNAs (miRNAs) 是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用 real-time PCR 检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p 的模拟物和特异性抑制剂分别处理细胞,采用 real-time PCR 和 Western印迹分别检测成肌因子 MyoG和成肌标志基因 MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达 miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC 的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分化被显著抑制.检测miR-143-3p对MyHC各亚型表达的影响发现,miR-143-3p表达的变化并不直接影响MyHC各亚型的表达.以上结果说明, miR-143-3p在骨骼肌和成肌细胞中均有表达,能够促进C2C12成肌细胞分化,但并不直接调控MyHCs的表达.  相似文献   

6.
7.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

8.
目的探讨微小RNA-142-3p(miR-142-3p)对过氧化氢诱导的心肌细胞损伤的影响及其作用机制。 方法构建氧化应激损伤模型,以H9C2心肌细胞为研究对象,实验将心肌细胞转染后分为正常对照组、H2O2组、H2O2+miR-142-3p组、H2O2+miR阴性对照组、H2O2+?si-?ELAVL1组、H2O2+siRNA对照组、H2O2+miR-142-3p+pcDNA-ELAVL1组、H2O2+miR-?142-3p+pcDNA组。分别采用qRT-PCR与Western Blot检测细胞中miR-142-3p与ELAVL1表达;检测各组活性氧(ROS)生成水平;MTT检测细胞存活率,流式细胞术检测细胞凋亡。双荧光素酶报告实验验证miR-142-3p与ELAVL1的靶向作用。Western Blot检测细胞中Cleaved Caspase-3、STAT3、Caspase-3、p-STAT3蛋白表达。两组间比较采用两样本t检验;多组间比较采用单因素方差分析,两两比较采用LSD-t检验。 结果H2O2组心肌细胞中miR-142-?3p(0.26±0.06)、p-STAT3表达水平(0.36±0.04)、细胞存活率(61.73±6.48)﹪与正常对照组相比下降(P均< 0.01),而ROS水平(1?566.38±121.57)、细胞凋亡率(27.46±1.73)﹪、Cleaved Caspase-3(0.68±0.08)及ELAVL1表达水平(4.23±0.31)均升高(P均< 0.01);双荧光素酶报告实验证实ELAVL1是miR-142-3p的靶基因;miR-142-3p过表达或沉默ELAVL1表达可明显促进心肌细胞存活、上调p-STAT3表达,而抑制细胞凋亡及Cleaved Caspase-3表达;ELAVL1过表达可逆转miR-142-3p对过氧化氢处理H9C2细胞的保护作用。 结论miR-142-?3p可通过抑制ELAVL1表达进而减轻过氧化氢诱导的心肌细胞损伤,其可能通过影响STAT3信号通路而保护心肌细胞。  相似文献   

9.
ILF3反义 RNA 1(ILF3 antisense RNA 1,ILF3-AS1)是一条定位于染色体 19p13.2的lncRNA,它是白介素增强子结合因子3(interleukin enhancer binding factor 3,ILF3)的反义 RNA.ILF3-AS1在多种肿瘤发生发展中发挥关键作用,但其...  相似文献   

10.
Recent studies have demonstrated the possible function of miR-139-5p in tumorigenesis. However, the exact mechanism of miR-139-5p in cancer remains unclear. In this study, the association of miR-139-5p expression with esophageal squamous cell carcinoma (ESCC) was evaluated in 106 pairs of esophageal cancer and adjacent non-cancerous tissue from ESCC patients. The tumor suppressive features of miR-139-5p were measured by evaluating cell proliferation and cell cycle state, migratory activity and invasion capability, as well as apoptosis. Luciferase reporter assay and Western blot analysis were performed to determine the target gene regulated by miR-139-5p. The mRNA level of NR5A2, the target gene of miR-139-5p, was determined in ESCC patients. Results showed that reduced miR-139-5p level was associated with lymph node metastases of ESCC. MiR-139-5p was investigated to induce cell cycle arrest in the G0/G1 phase and to suppress the invasive capability of esophageal carcinoma cells by targeting the 3′UTR of oncogenic NR5A2. Cyclin E1 and MMP9 were confirmed to participate in cell cycle arrest and invasive suppression induced by NR5A2, respectively. Pearson correlation analysis further confirmed the significantly negative correlation between miR-139-5p and NR5A2 expression. The results suggest that miR-139-5p exerts a growth- and invasiveness-suppressing function in human ESCCs, which demonstrates that miR-139-5p is a potential biomarker for early diagnosis and prognosis and is a therapeutic target for ESCC.  相似文献   

11.
目的:探讨外周血mi R-17-92簇对早期胃癌的诊断价值,为胃癌的早期诊断及治疗提供参考依据。方法:收集胃癌125例(Ⅰ期35例,Ⅱ期28例,Ⅲ期39例,Ⅳ期23例)和癌前病变24例(包括肠化生及上皮内瘤变),同时选择65例慢性胃炎作为对照组。采用实时荧光定量PCR技术(Real-time quantitative PCR,RT-qPCR)检测患者血清中的mi R-17-92基因簇的表达水平。通过受试者工作曲线(Receiver Operating Curve, ROC)及曲线下的面积(Area Under the Curve,AUC)评估mi R-17-92基因簇表达水平诊断早期胃癌的敏感性和特异性。结果:(1)慢性胃炎与癌前病变mi R-17-92基因簇表达比较无显著差异(P0.05);(2)早期胃癌及进展期胃癌mi R-17-5p表达明显高于慢性胃炎(P0.05),mi R-19a-3p、mi R-19b-3p、mi R-20a-5p和mi R-92a-3p表达则显著低于慢性胃炎及进展期胃癌(P0.05);(3)miR-17-5p诊断早期胃癌的曲线下面积较mi R-19a-3p、mi R-19b-3p、mi R-20a-5p、mi R-92a-3p及CEA更高;(4)miR-19a-3p、mi R-19b-3p、mi R-20a-5p、mi R-92a-3p高低表达组与在胃癌的浸润深度间有显著性差异(P0.05),mi R-19b-3p高低表达组在胃癌的临床分期间有显著性差异(P0.05);(5)miR-17-5p、mi R-19a-3p、mi R-19b-p、mi R-20a-5p、mi R-92a-3p诊断早期胃癌的阳性率较CEA、CA199高。结论:外周血mi R-17-92基因簇对于早期胃癌的诊断价值明显优于CEA和CA199,这可能为胃癌的早诊早治提供新的策略。  相似文献   

12.
目的探讨miR-98-5p对宫颈癌细胞增殖、迁移和侵袭的影响以及其作用机制。 方法选取2016年1月至2019年1月郴州市第一人民医院收治的宫颈癌患者的癌组织和癌旁组织;予以miR-98-5p、si-PYGO2及anti-miR-98-5p单独或共培养Siha细胞,记为:miR-NC组、miR-98-5p组、si-NC组、si-PYGO2组、anti-miR-NC组、anti-miR-98-5p组、miR-98-5p+pcDNA组、miR-98-5p+pcDNA-PYGO2组。运用qRT-PCR检测宫颈癌组织和细胞中miR-98-5p和PYGO2 mRNA的表达水平;Western blot检测蛋白表达;MTT法检测细胞增殖活性;Transwell检测细胞迁移和侵袭;将WT-PYGO2、MUT-PYGO2分别与miR-NC、miR-98-5p共转染至Siha细胞中,双荧光素酶报告基因检测实验检测荧光活性。采用方差分析和t检验进行统计学分析。 结果与癌旁组织相比,宫颈癌组织中miR-98-5p表达水平降低(0.98±0.08比0.47±0.05),PYGO2 mRNA (1.00±0.07比2.43±0.24)和蛋白表达水平(0.27±0.03比0.62±0.05)均升高(P均< 0.001)。与正常宫颈细胞Ect1/E6E7相比,宫颈癌细胞Siha、Hela、Caski中PYGO2 mRNA (0.98±0.09比2.76±0.23、2.46±0.24、2.55±0.21)和蛋白表达水平(0.21±0.03比0.62±0.06、0.51±0.05、0.57±0.06)升高;miR-98-5p的表达水平降低(1.00±0.08比0.34±0.04、0.56±0.05、0.46±0.04) (P均< 0.05)。与miR-NC组相比,miR-98-5p组宫颈癌Siha细胞活性(48 h:0.61±0.05比0.42±0.04,72 h:1.02±0.09比0.59±0.06)、迁移数量[ (112.46±10.27)个比(48.35±4.96)个]及侵袭数量[ (92.47±9.56)个比(39.46±3.52)个]均降低(P均< 0.05)。与si-NC组相比,si-PYGO2组宫颈癌Siha细胞活性(48 h:0.64±0.06比0.46±0.05,72 h:1.05±0.08比0.67±0.06)、Siha迁移数量[ (106.48±9.75)个比(42.16±4.25)个]和侵袭数量[ (87.63±8.11)个比(35.42±6.20)个]均降低(P均< 0.05);Cyclin D1、MMP-2、MMP-9、MMP-14表达水平降低,p21、p27表达水平升高,差异有统计学意义(P均< 0.05)。与miR-NC组比较,miR-98-5p组转染WT-PYGO2的Siha细胞荧光素酶活性(0.38±0.04比0.99±0.08)降低(P < 0.05),转染MUT-PYGO2的Siha细胞荧光素酶活性(1.03±0.08比1.01±0.09)差异无统计学意义(P > 0.05)。PYGO2过表达逆转了miR-98-5p过表达对宫颈癌Siha细胞的增殖、迁移和侵袭的抑制作用。 结论miR-98-5p可抑制宫颈癌细胞增殖、迁移和侵袭,其机制可能与其靶向调控PYGO2的表达有关,将可为宫颈癌的预防和治疗提供新靶点。  相似文献   

13.
Glioma is the most common cancer in human brain system and seriously threatens human health. miRNA-320 has been demonstrated to be closely correlated with the development of glioma. However, its effect and molecular mechanism underlying radioresistance have not been fully elucidated in glioma. Here, RT-qPCR assay was used to assess the expressions of miR-320 and forkhead box protein M1 (FoxM1) mRNA in glioma tumor tissues and cells. The effects of miR-320, FoxM1 and sirtuin type 1 (Sirt1) on radiosensitivity in glioma cells were evaluated by clone formation assay, apoptosis assay, histone H2AX phosphorylation level (γH2AX) detection and caspase 3 activity analysis, respectively. The direct interaction between miR-320 and FoxM1 was detected by luciferase assay. The protein levels of FoxM1, Sirt1 and γH2AX were measured by western blot assay. We found that miR-320 expression was down-regulated and FoxM1 expression was up-regulated in radioresistant glioma tissues and IR-treated glioma cells. miR-320 overexpression dramatically enhanced radiosensitivity, promoted apoptosis, and improved γH2AX expression and caspase 3 activity in glioma cells. Luciferase reporter assay and western blot assay further validated that miR-320 suppressed FoxM1 expression by directly targeting 3’ UTR region of FoxM1. Moreover, miR-320 inhibited Sirt1 expression via targeting FoxM1 in glioma cells. Furthermore, overexpression of FoxM1 and Sirt1 strikingly attenuated miR-320-induced increase of radiosensitivity, apoptosis and γH2AX expression in glioma cells. In conclusion, miR-320 enhanced radiosensitivity of glioma cells through down-regulation of Sirt1 by directly targeting FoxM1.  相似文献   

14.
Kang HW  Wang F  Wei Q  Zhao YF  Liu M  Li X  Tang H 《FEBS letters》2012,586(6):897-904
miR-20a is an important member of the miR-17-92 cluster, and its real function in cervical cancer cells is unknown. Our study demonstrated that miR-20a was upregulated in cervical cancer tissues. Overexpression of miR-20a in cervical cancer-derived cell lines, HeLa and C-33A, enhanced long-term cellular proliferation, migration and invasion, whereas inhibition of miR-20a suppressed those functions. We also confirmed that oncogenic TNKS2 is directly upregulated by miR-20a. Furthermore, suppression of TNKS2 expression could inhibit colony formation, migration and invasion of cervical cancer cells. Therefore, we concluded that miR-20a can promote migration and invasion of cervical cancer cells through the upregulation of TNKS2.  相似文献   

15.
MiRNA-5195-3p (miR-5195-3p), a recently discovered and poorly studied miRNA, has been reported to suppress bladder cancer cell behavior. However, its regulatory role in non-small cell lung cancer (NSCLC) remains unclear. Here, the expression of miR-5195-3p was found to be reduced in NSCLC tissues and cells. The in vitro experiments showed that miR-5195-3p upregulation repressed cell proliferation, migration and invasion by CCK-8 and transwell assays. In addition, MYO6 was predicted and confirmed as a potential target of miR-5195-3p by Bioinformatics analysis, Luciferase reporter assay and western blot analysis. There was significantly negative correlation between miR-5195-3p and MYO6 in NSCLC tissues. Furthermore, MYO6 knockdown exhibited similar effects to those of miR-5195-3p overexpression in NSCLC cells, and restored MYO6 expression reversed the inhibitory effects of miR-5195-3p. Therefore, these results demonstrate that miR-5195-3p functions as a tumor suppressor by directly modulating MYO6 expression in NSCLC cells, and may be an innovative candidate target for NSCLC therapy.  相似文献   

16.
17.
MicroRNAs (miRNAs/miRs) have aroused increasing attention in colorectal cancer (CRC) therapy. This study is designed for a detailed analysis of the roles of miR-16-5p and forkhead box K1 (FOXK1) in cell angiogenesis and proliferation during CRC in addition to their underlying mechanisms. CRC tissues and colon cancer cell lines (SW620 and HCT8) were investigated. qRT-PCR and Western blot were utilized to evaluate miR-16-5p and FOXK1 expression. Following gain- and loss-of-function assays on miR-16-5p or FOXK1, the effects of miR-16-5p and FOXK1 were assessed on cell angiogenesis and proliferation in CRC cells. A dual-luciferase reporter assay was employed to evaluate the binding relationship of miR-16-5p and FOXK1. Western blot was used to determine the effects of miR-16-5p and FOXK1 on key molecules of the PI3K/Akt/mTOR pathway. Highly expressed FOXK1 and lowly expressed miR-16-5p were observed in CRC cells and tissues. miR-16-5p overexpression or FOXK1 knockdown reduced CRC cell proliferation and angiogenesis of human umbilical vein endothelial cells co-cultured with the supernatant of CRC cells, whereas miR-16-5p silencing or FOXK1 upregulation caused opposite trends. Additionally, miR-16-5p negatively modulated FOXK1 expression. The blockade of the PI3K/Akt/mTOR pathway was triggered by miR-16-5p overexpression or FOXK1 silencing. In conclusion, miR-16-5p hampers cell angiogenesis and proliferation during CRC by targeting FOXK1 to block the PI3K/Akt/mTOR pathway.Key words: microRNA-16-5p, forkhead box K1, PI3K/Akt/mTOR pathway, colorectal cancer, proliferation, angiogenesis  相似文献   

18.
Colon cancer is a detrimental neoplasm of the digestive tract. MicroRNAs (miRNAs) as central regulators have been discovered in colon cancer. Nonetheless, the impact of miR-204-3p on colon cancer remains indistinct. The research attempted to uncover the impacts of miR-204-3p on colon cancer cells growth, migration, and invasion. miR-204-3p expression level in colon cancer tissues and diverse colon cancer cell lines were testified by the quantitative real-time polymerase chain reaction. Exploration of the impacts of miR-204-3p on cell growth, migration, invasion, and their associated factors through assessment of CCK-8, flow cytometry, Transwell, and western blot, respectively. High mobility group AT-hook 2 (HMGA2) expression was then detected in Caco-2 cells after miR-204-3p mimic and inhibitor transfection, additionally dual-luciferase activity was implemented to further uncover the correlation between HMGA2 and miR-204-3p. The impact of HMGA2 on Caco-2 cell growth, migration, and invasion was finally assessed. We found that repression of miR-204-3p was discovered in colon cancer tissues and HCT116, SW480, Caco-2, HT29 and SW620 cell lines. MiR-204-3p overexpression mitigated Coca-2 cell viability, facilitated apoptosis, simultaneously adjusted CyclinD1 and cleaved caspase-3 expression. Cell migration, invasion, and the associated factors were all suppressed by miR-204-3p overexpression. Reduction of HMGA2 was presented in Caco-2 cells with miR-204-3p mimic transfection, and HMGA2 was predicated to be a target gene of miR-204-3p. Besides, HMGA2 silence showed the inhibitory effect on Caco-2 cells growth, migration, and invasion. In conclusion, miR-204-3p repressed colon cancer cell growth, migration, and invasion through targeting HMGA2.  相似文献   

19.
Cervical cancer is the most common gynaecological malignancy, with a high incidence rate and mortality rate in middle-aged women. Human bone marrow mesenchymal stem cells (hBMSCs) have been implicated in the initiation and subsequent development of cancer, along with the involvement of extracellular vesicles (EVs) mediating intracellular communication by delivering microRNAs (miRNAs or miRs). This study is aimed at investigating the physiological mechanisms by which EVs-encapsulated miR-144-3p derived from hBMSCs might mediate the progression of cervical cancer. The expression profiles of centrosomal protein, 55 Kd (CEP55) and miR-144-3p in cervical cancer cell lines and tissues, were quantified by RT-qPCR and Western blot analysis. The binding affinity between miR-144-3p and CEP55 was identified using in silico analysis and luciferase activity determination. Cervical cancer cells were co-cultured with EVs derived from hBMSCs that were treated with either miR-144-3p mimic or miR-144-3p inhibitor. Cervical cancer cell proliferation, invasion, migration and apoptosis were detected in vitro. The effects of hBMSCs-miR-144-3p on tumour growth were also investigated in vivo. miR-144-3p was down-regulated, whereas CEP55 was up-regulated in cervical cancer cell lines and tissues. CEP55 was targeted by miR-144-3p, which suppressed cervical cancer cell proliferation, invasion and migration and promoted apoptosis via CEP55. Furthermore, similar results were obtained by hBMSCs-derived EVs carrying miR-144-3p. In vivo assays confirmed the tumour-suppressive effects of miR-144-3p in hBMSCs-derived EVs on cervical cancer. Collectively, hBMSCs-derived EVs-loaded miR-144-3p impedes the development and progression of cervical cancer through target inhibition of CEP55, therefore providing us with a potential therapeutic target for treating cervical cancer.  相似文献   

20.
Prostate cancer (CaP) is the second most common cancer in men worldwide in 2012, and radiation therapy is one of the most common definitive treatment options for localized CaP. However, radioresistance is a major challenge for the current radiotherapy, accumulating evidences suggest microRNAs (miRNAs), as an important regulator in cellular ionizing radiation (IR) responses, are closely correlated with radiosensitivity in many cancers. Here, we identified microRNA-16-5p(miR-16-5p) is significantly upregulated in CaP LNCaP cells following IR and can enhance radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway. To identify the expression profile of miRNAs in CaP cells exposed to IR, we performed human miRNA probe hybridization chip analysis and miR-16-5p was found to be significantly overexpressed in all treatment groups that irradiated with different doses of X-rays and heavy ions (12C6+). Furthermore, overexpression of miR-16-5p suppressed cell proliferation, reduced cell viability, and induced cell cycle arrest at G0/G1 phase, resulting in enhanced radiosensitivity in LNCaP cells. Additionally, miR-16-5p specifically targeted the Cyclin D1/E1–3′-UTR in LNCaP cells and affected the expression of Cyclin D1/E1 in both mRNA and protein levels. Taken together, miR-16-5p enhanced radiosensitivity of CaP cells, the mechanism may be through modulating Cyclin D1/Cyclin E1/pRb/E2F1 pathway to cause cell cycle arrest at G0/G1 phase. These findings provided new insight into the correlation between miR-16-5p, cell cycle arrest, and radiosensitivity in CaP, revealed a previously unrecognized function of miR-16-5p–Cyclin D1/E1–pRb–E2F1 regulation in response to IR and may offer an alternative therapy to improve the efficiency of conventional radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号