首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lateral diffusion coefficient of ganglioside GM1 incorporated into preformed dimyristoylphosphatidylcholine (DMPC) vesicles has been investigated under a variety of conditions using the technique of fluorescence photobleaching recovery. For these studies the fluorescent probe 5-(((2-Carbohydrazino)methyl)thio)acetyl) amino eosin was covalently attached to the periodate-oxidized sialic acid residue of ganglioside GM1. This labeled ganglioside exhibited a behavior similar to that of the intact ganglioside, and was able to bind cholera toxin. The lateral diffusion coefficient of the ganglioside was dependent upon the gel-liquid crystalline transition of DMPC. Above Tm the lateral diffusion coefficient of the ganglioside was 4.7 X 10(-9) cm2 s-1 (with greater than 80% fluorescence recovery). This diffusion coefficient is significantly slower than the one previously observed for phospholipids in DMPC bilayers. The addition of increasing amounts of ganglioside, up to a maximum of 10 mol %, did not have a significant effect on the lateral diffusion coefficient or in the percent recovery. At 30 degrees C, the lateral mobility of ganglioside GM1 was not affected by the presence of 5 mM Ca2+, suggesting that, at least above Tm, Ca2+ does not induce a major perturbation in the lateral organization of the ganglioside molecules. The addition of stoichiometric amounts of cholera toxin to samples containing either 1 or 10 mol % ganglioside GM1 produced only a small decrease in the measured diffusion coefficient. The fluorescence recovery after photobleaching experiments were complemented with excimer formation experiments using pyrene-phosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Amyloid β-peptide (Aβ) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of Aβ with lipid bilayers by multinuclear NMR using 31P nuclei. We found that Aβ (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPC), to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of Aβ (1-40), as viewed from 31P NMR. The difference of the isotropic peak intensity between DMPC/Aβ and DMPC/GM1/Aβ suggests a specific interaction between Aβ and GM1. We show that in the DMPC/GM1/Aβ system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the Aβ peptide, and facilitated by GM1.  相似文献   

3.
M Myers  E Freire 《Biochemistry》1985,24(15):4076-4082
The interactions of the opioid peptide [D-Ala2]methionine-enkephalinamide with dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles containing gangliosides GM1, Gd1a, and Gt1b and synaptic plasma membranes selectively enriched with dimyristoylphosphatidylcholine (DMPC) and ganglioside Gd1a have been investigated by using high-sensitivity differential scanning calorimetry. In the absence of gangliosides, the addition of enkephalinamide in concentrations of up to 10(-3) M does not induce any appreciable change in the heat capacity function of DPPC. In the presence of gangliosides, however, changes in the heat capacity function were observed with as little as micromolar concentrations of the enkephalinamide; the same is true for DMPC-Gd1a-enriched synaptic membranes. The magnitude and the nature of the enkephalinamide effect depend on the type of ganglioside studied. For DPPC vesicles containing ganglioside GM1 only a slight broadening in the heat capacity function and a small upward shift in the transition temperature were observed. For DPPC vesicles containing ganglioside Gd1a the effect was more dramatic; enkephalinamide concentrations as low as 10(-5) M caused the appearance of two well-defined peaks in the heat capacity function in contrast to the one peak observed in the absence of enkephalinamide. In the case of DPPC vesicles containing ganglioside Gt1b the enkephalinamide effect was seen at concentrations of 10(-4) M or higher. Synaptic plasma membranes were isolated from bovine brain, selectively enriched with exogenous lipid, and their thermotropic behavior was characterized by steady-state fluorescence spectroscopy and differential scanning calorimetry. This lipid enrichment results in the appearance of a membrane phase transition otherwise absent in the intact membrane preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Gangliosides, are glycosphingolipids, present in all vertebrate plasma membranes with particular abundance in nerve cell membrane. Gangliosides can act as portals for antimicrobial peptides, hormones, viruses, lectins, toxins and pathogens. They are strategically positioned on the outer membrane and hence can participate in a large number of recognition processes. Their abundance in nerve cell membrane makes them “likely” receptor candidates for neuropeptides. In this review we outline our work in the area of GM1-peptide/protein interaction. We have explored the effect of GM1 containing micelles/bicelles on structures of peptides, proteins as well as on denatured proteins. It has been observed that the peptides that are disordered or having random coil structure in aqueous solution, attained an ordered three-dimensional structure when interact with GM1. It is also observed that denatured proteins undergo refolding in presence of ganglioside. Peptides/proteins show stronger interaction with membrane lipid bilayer in presence of ganglioside than that without ganglioside. This review mainly focuses on capability of ganglioside GM1 in modulating interaction, structural, location and dynamics of peptides/proteins using a number of biophysical techniques–solution NMR, DOSY, CD, fluorescence etc.  相似文献   

5.
Spectrin from human erythrocytes binds to bilayer dispersions of both DMPC and DMPS:DMPC (1:1, w/w). However, no effect of bound spectrin on the conformation of the lipid head groups, as measured from the deuterium quadrupolar splittings of DMPC or DMPS specifically deuterated in the polar head groups, was detected in 1:1 mixtures of the two lipids containing either deuterated DMPC or DMPS. Neither the phase transition of the DMPS:DMPC mixtures, nor the spin-lattice relaxation time (T1) of the deuterated DMPS head group, was affected by spectrin. These results argue against any strong interaction of spectrin with phosphatidylserine and rule out the possibility that spectrin is responsible for the maintenance of PS in the inner monolayer of the erythrocyte membrane during the whole life-span of this cell.  相似文献   

6.
Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was only observed for mixtures of DMPC with GM3, lyso-GM1, and deacetyl-lyso-GM1. Ca2+ obviously accumulates at the bilayer-water interface and leads to partial dehydration of the headgroup region in the gel as well as in the liquid-crystalline phase. This can be concluded from the changes in the amide I band shapes. With the exception of DMPC/deacetyl-GM1, the effects on the ester C==O bands are small. The addition of Ca2+ has minor effects on the phase behavior, with the exception of the DMPC/GM1 mixture.  相似文献   

7.
Interaction of the local anesthetic dibucaine with small unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) containing different mole percents of monosialoganglioside (GM1) has been studied by fluorescence spectroscopy. Fluorescence measurements on dibucaine in the presence of phospholipid vesicles containing various amounts of GM1 yielded a pattern of variation of wavelength at emission maximum and steady-state anisotropy which indicated that the microenvironment of dibucaine is more hydrophobic and rigid in membranes that contain GM1 than in membranes without it. Experiments on quenching of fluorescence from membrane-associated dibucaine by potassium iodide showed reduced quenching efficiency with the increase in GM1 content of the vesicles, demonstrating lesser accessibility of the iodide quenchers to dibucaine in the presence of GM1, when compared to that in its absence. Total emission intensity decay profiles of dibucaine yielded two lifetime components of 1 and 2.8–3.1 ns with mean relative contributions of 25 and 75%, respectively. The mean lifetime in vesicles was 20–30% lower than in the aqueous medium and showed a definite increase in presence of GM1 from that in the absence of it. All the spectral properties point that dibucaine encountered regions of membrane containing significant amount of GM1 and penetrated deeper in hydrophobic core of the bilayer.  相似文献   

8.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the β-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

9.
Gangliosides are neuraminic acid-containing glycolipids preferently localized in nervous membranes and showing physicochemical peculiarities, e.g., drastically changing amphiphilic properties by Ca2+ binding. On account of this they are favorite compounds to act as modulators of membraneous organization and functions during synaptic transmission. Lipid monolayers are suitable experimental systems for the study of the surface behavior of amphipatic molecules and therefore are useful to interpret membraneous organization. The surface pressure/area isotherms of monolayers of different individual gangliosides (GM1, GD1a, GD1b, GT1b) of an artificial reconstituted and a natural ganglioside mixture from bovine brain and of ganglioside mixtures from different brain parts of summer- and winter-adapted dsungarian hamsters were compared at three temperatures (11, 20, and 37 degrees C) with egg phosphatidylcholine (PC) and phosphatidylserine (PS) monolayers. The monolayers were formed in a Teflon trough on a triethanolamine/HCl-buffered (pH 7.4) subphase, in some cases containing different amounts of CaCl2. The surface pressure/area isotherms of ganglioside monolayers, in contrast to phospholipids, generally showed slowly rising slopes, with transitions from the liquid-expanded to the liquid-condensed state at a surface pressure of 20-30 mN/m. Ganglioside monolayers, in particular from GD1a or GT1b versus GD1b or from mixtures from summer- versus winter-adapted hamster brain, were differently affected by temperature and/or by Ca2+. PS monolayers were slightly condensed only by Ca2+. PC monolayers, however, were influenced neither by temperature nor by Ca2+. In mixed monolayers of the unpolar natural lipid cholesterol (Ch) and the disialoganglioside GD1a, intermolecular interactions were indicated. Ganglioside monolayers, in contrast to phospholipids, were shown to be easily modulated by temperature and/or Ca2+ ions, thus enabling gangliosides to act as possible membrane modulators, e.g., during synaptic transmission. In particular, the differences concerning the influences of temperature and/or Ca2+ on the surface behavior of ganglioside mixtures from the brain of summer- compared with winter-adapted hamsters are correlated with other physiologically relevant data.  相似文献   

10.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the beta-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

11.
A procedure was developed for the cultivation of cells derived from the cerebral hemispheres of the 21-day old rat. Approximately 98 percent of the cells in a 10 day culture are astrocytes that contain glial fibrillary acidic protein. Analysis of the extracted gangliosides by thin layer chromatography revealed that ganglioside GM1 was absent and that the predominant ganglioside was GM3. Very small amounts of the polysialogangliosides GD1a, GD1b, and GT1b were detected. The concentration of gangliosidic NeuNAc per mg protein in these astrocytes was only 3 percent that observed in the 5 day culture of a mixed cell preparation from newborn rat brain. Immunohistochemical and histochemical studies were performed on the mixed cell population of the minced tissue of 21-day old rat brain prior to cultivation. Astrocytes did not stain for hyaluronectin. These cells also did not provide a positive staining reaction for ganglioside GM1 utilizing the antiganglioside GM1 peroxidase-antiperoxidase procedure and the biotinylated choleragen-avidin-peroxidase procedure. These two histochemical methods for ganglioside GM1 also did not stain astrocytes that had been cultured for 5 days. Oligodendroglial cells, which were also present in the uncultured 21-day-old minced brain tissue, stained positively for ganglioside GM1 and hyaluronectin. Hyaluronectin had previously been shown to be a marker for oligodendroglia. Oligodendroglial cells which were present in the 5 day cultures of 21-day old brain tissue also provided a positive reaction for ganglioside GM1. It is concluded that ganglioside GM1 is absent in astroglia. The presence of small amounts of polysialogangliosides in the "pure" astrocyte preparation is discussed.  相似文献   

12.
The effect(s) of bovine brain ganglioside-GM1 on the order of phosphatidylcholine-cholesterol membranes were studied using steady-state fluorescence polarization (FPZ) techniques with 1,6-diphenyl-1,3,5-hexatriene (DPH) as the membrane probe. In the absence of cholesterol, GM1 (30 mol%) increases both membrane order and the phase transition temperature of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) membranes. However, in the presence of cholesterol (0.3 or 0.5, cholesterol/phospholipid molar ratio), GM1 significantly decreases steady-state anisotropy (rs) at temperatures above the Tm for the particular phospholipid. This effect may, in part relate to a dilution of membrane cholesterol and is shared by bovine brain sphingomyelin (SM). GM1 (30 mol%) increases the order of 1-palmityl-2-oleyl-PC (POPC) membranes. However, in the presence of cholesterol (0.3 molar ratio) GM1 neither increases or decreases order. Thus, in cholesterol containing artificial membranes, the effect of GM1 depends on the phosphatidylcholine (PC) fatty acid composition and may not be evident from the effect of GM1 on pure PC membranes.  相似文献   

13.
The influence of ceramide composition on the rate of GM1 association to HeLa cells has been investigated by incubating the cells in the presence of either native ganglioside or molecular species carrying highly homogeneous long chain base moieties, fractionated from native GM1. The GM1 ganglioside species carrying the unsaturated C18 long chain base moiety proved to have the fastest rate of association, whereas the saturated species carrying 20 carbon atoms had the slowest rate. After having increased the GM1 cell content (65-fold) by incubation with the various ganglioside species, the cells were incubated with cholera toxin and the time course of cyclic AMP accumulation was monitored. Remarkable differences among cells enriched with the various molecular species were found in the duration of the lag time preceding the accumulation of cyclic AMP, the shortest being displayed by the unsaturated C18 species. Moreover, the amount of cyclic AMP accumulated after a given time of incubation with cholera toxin was significantly higher when the C18:1-GM1 species was present than with native GM1. Fluorescence anisotropy experiments, carried out using the probe 1,3-diphenylhexatriene, show that the GM1 ganglioside ceramide moiety was also modifying the cell membrane fluidity of the host.  相似文献   

14.
The distribution of low concentrations of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol monolayers supported on mica has been studied using atomic force microscopy (AFM). The monolayers studied correspond to a pure gel phase and a mixture of liquid-expanded (LE) and liquid-condensed (LC) phases for DPPC and to a single homogeneous liquid-ordered phase for 2:1 DPPC/cholesterol. The addition of 2.5-5% GM1 to phase-separated DPPC monolayers resulted in small round ganglioside-rich microdomains in the center and at the edges of the LC domains. Higher amounts of GM1 (10%) give numerous filaments in the center of the LC domains and larger patches at the edges. A gel phase DPPC monolayer containing GM1 showed large domains containing a network of GM1-rich filaments. The addition of GM1 to a liquid-ordered 2:1 DPPC/cholesterol monolayer gives small, round domains that vary in size from 50 to 150 nm for a range of surface pressures. Larger amounts of GM1 lead to coalescence of the small, round domains to give longer filaments that cover 30-40% of the monolayer surface for 10 mol % GM1. The results indicate that biologically relevant GM1 concentrations lead to submicron-sized domains in a cholesterol-rich liquid-ordered phase that is analogous to that found in detergent-insoluble membrane fractions, and are thought to be important in membrane microdomains or rafts. This demonstrates that AFM studies of model monolayers and bilayers provide a powerful method for the direct detection of microdomains that are too small for study with most other techniques.  相似文献   

15.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (B(max)) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in deltapi change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The deltapi change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a "raft-like" mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

16.
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45 +/- 7 nM in pure DMPC SUVs to 219 +/- 20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7 +/- 0.2 nM in the gel phase at 18 degrees C and to 2.6 +/- 0.7 nM in the fluid phase at 55 degrees C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.  相似文献   

17.
Density-dependent spectrin binding to dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine (DMPC/DMPE) small uni-lamellar vesicles (SUVs) has been directly evaluated in this work from the increase in the extent of quenching of the tryptophan fluorescence of spectrin at two different temperatures, above and below the main phase transition temperatures (Tm). Results from the binding studies of spectrin to phospholipid SUVs indicated that the binding dissociation constant Kd, increased from 45±7 nM in pure DMPC SUVs to 219±20 nM in DMPC/DMPE (50:50) SUVs, both in the gel and liquid crystalline phase. However, in pure DMPE SUVs the Kd decreased drastically to 0.7±0.2 nM in the gel phase at 18°C and to 2.6±0.7 nM in the fluid phase at 55°C indicating a high affinity binding of spectrin for the bilayer-forming DMPE. The maximum extent of phospholipid-induced quenching and the number of spectrin molecules associated with one SUV particle, evaluated in the present work, led to a model in DMPC/DMPE bilayer membranes indicating the PE-binding site of spectrin to localize at one of the terminal domains of the dimeric spectrin. A direct evidence of the localization of the PE-binding site at one of the terminal ends of the spectrin dimer also came from electron microscopic observation in fluid membranes made of bovine brain PE.  相似文献   

18.
We studied the interaction of GM3 ganglioside with sphingomyelin (SM) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in Langmuir monolayers mimicking, respectively, raft and fluid phase of a cellular membrane, by surface pressure measurements and fluorescence microscopy. No difference was observed in the behavior of SM-GM3 and POPC-GM3 monolayers. In both cases, a GM3 threshold concentration has been underlined between 20 and 40 mol%. Below this threshold, SM-GM3 and POPC-GM3 monolayers behave ideally, suggesting that GM3 and host lipid would form separated domains. On the contrary, above the threshold, a condensation of monolayers is observed. This could be due to a partial solubilisation of GM3 in host lipid, leading to a change in orientation of GM3 molecules at the air-water interface.  相似文献   

19.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

20.
The technique of specular reflection of neutrons is applied for the first time to study the charge-dependent interaction of the protein spectrin and the polypeptide poly-L-lysine with model phospholipid monolayers in the condensed phase state. We first established the structure of a pure monolayer of dimyristolyphosphatidylcholine (DMPC) in both the expanded and condensed fluid phase states without protein in the subphase. The thickness of the hydrocarbon chains increases from 11.4 +/- 1.5 A in the expanded state to 15.8 +/- 1.5 A in the condensed state, whereas the head group region is approximately 10 A thick for both phase states. When spectrin is present in the subphase, the dimensions of DMPC in the condensed state are not significantly affected, but there is approximately 0.09 volume fraction spectrin in the head group region. Lipid-spectrin coupling is enhanced by electrostatic interaction, as the volume fraction of spectrin in the head group region increases to 0.22 in a mixed monolayer of DMPC and negatively charged dimyristolyphosphatidylglycerol in the condensed state. In contrast to spectrin, polylysine does not penetrate the head group region, but forms a layer electrostatically adsorbed to the charged head groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号