首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Abstract: There is growing evidence that cyclic GMP (cGMP) plays important roles in the brain. In cultured rat astrocytes, we observed that the cGMP-inducing C-type natriuretic peptide (CNP) and cGMP analogues caused a decrease in intracellular pH (pHi). To examine whether this effect was due to inhibition of an Na+/H+ exchanger (NHE), we acidified cells by replacing extracellular Na+ by choline and examined the kinetics of the pHi recovery that occurred on reintroduction of Na+ in the extracellular medium. Both CNP and amiloride analogues inhibited the Na+-dependent pHi recovery, even in the nominal absence of CO2/HCO3?. This indicated that CNP inhibited the activity of an exchanger that was Na+-dependent, HCO3?-independent, and sensitive to known inhibitors of NHE. However, comparison of the potencies of four distinct amiloride analogues revealed a pharmacological profile that was different from that of any other NHE characterized to date. cGMP mimicked the effect of CNP on sodium-dependent pHi recovery, but the native nucleotide was as potent as membrane-permeant analogues. Intracellularly produced cGMP was very rapidly exported out of astrocytes. Probenecid and niflumic acid slowed down the rate of cGMP egression and inhibited the effect of CNP on Na+-dependent recovery, but not that of extracellular cGMP. Altogether, our data indicate that cGMP inhibits a novel type of NHE in astrocytes via an extracellular site of action. If these results with primary cultures transfer to brain, this phenomenon may constitute a mechanism by which natriuretic peptides exert some of their actions in the brain, as pHi transients have been shown to modulate several important astrocytic functions.  相似文献   

2.
Regulation of intracellular pH is critical for the maintenance of cell homeostasis in response to stress. We used yeast two-hybrid screening to identify novel interacting partners of the pH-regulating transporter NBCe1-B. We identified Hsp70-like stress 70 protein chaperone (STCH) as interacting with NBCe1-B at the N-terminal (amino acids 96–440) region. Co-injection of STCH and NBCe1-B cRNA into Xenopus oocytes significantly increased surface expression of NBCe1-B and enhanced bicarbonate conductance compared with NBCe1-B cRNA alone. STCH siRNA decreased the rate of Na+-dependent pHi recovery from NH4+ pulse-induced acidification in an HSG (human submandibular gland ductal) cell line. We observed that in addition to NBCe1-B, Na+/H+ exchanger (NHE)-dependent pHi recovery was also impaired by STCH siRNA and further confirmed the interaction of STCH with NHE1 but not plasma membrane Ca2+ ATPase. Both NBCe1-B and NHE1 interactions were dependent on a specific 45-amino acid region of STCH. In conclusion, we identify a novel role of STCH in the regulation of pHi through site-specific interactions with NBCe1-B and NHE1 and subsequent modulation of membrane transporter expression. We propose STCH may play a role in pHi regulation at times of cellular stress by enhancing the recovery from intracellular acidification.  相似文献   

3.
Adequate regulation of endolymphatic pH is essential for maintaining inner ear function. The Na+–H+ exchanger (NHE) is a major determinant of intracellular pH (pHi), and facilitates Na+ and fluid absorption in various epithelia. We determined the functional and molecular expression of NHEs in cultured human endolymphatic sac (ES) epithelial cells and examined the effect of IFN‐γ on NHE function. Serial cultures of human ES epithelial cells were generated from tissue samples. The molecular expression of NHE1, ‐2, and ‐3 isoforms was determined by real‐time RT‐PCR. The functional activity of NHE isoforms was measured microfluorometrically using a pH‐sensitive fluorescent dye, 2′,7′‐bis(carbonylethyl)‐5(6)‐carboxyfluorescein (BCECF), and a NHE‐inhibitor, 3‐methylsulfonyl‐4‐piperidinobenzoyl guanidine methanesulfonate (HOE694). NHE1, ‐2, and ‐3 mRNAs were expressed in human ES epithelial cells. Functional activity of NHE1 and ‐2 was confirmed in the luminal membrane of ES epithelial cells by sequentially suppressing Na+‐dependent pHi recovery from intracellular acidification using different concentrations of HOE694. Treatment with IFN‐γ (50 nM for 24 h) suppressed mRNA expression of NHE1 and ‐2. IFN‐γ also suppressed functional activity of both NHE1 and ‐2 in the luminal membrane of ES epithelial cells. This study shows that NHEs are expressed in cultured human ES epithelial cells and that treatment with IFN‐γ suppresses the expression and functional activity of NHE1 and ‐2. J. Cell. Biochem. 107: 965–972, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1 increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing concentrations of ET-1 (10−10 to 10−8 M). We found that application of exogenous ET-1 increased pHi and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pHi.  相似文献   

5.
We previously demonstrated that the progesterone‐ (P) initiated human sperm acrosome reaction (AR) was dependent on the presence of extracellular Na+ (Na+o). Moreover, Na+o depletion resulted in a decreased cytosolic pH (pHi), suggesting involvement of a Na+‐dependent pHi regulatory mechanism during the P‐initiated AR. We now report that the decreased pHi resulting from Na+o depletion is reversible and mediated by a Na+/H+ exchange (NHE) mechanism. To determine the role of an NHE in the regulation of pHi, capacitated spermatozoa were incubated in Na+‐deficient, bicarbonate/CO2‐buffered (0NaB) medium for 15–30 min, which resulted in an intracellular acidification as previously reported. These spermatozoa were then transferred to Na+‐containing, bicarbonate/CO2‐buffered (NaB) medium; Na+‐containing, Hepes‐buffered (NaH) medium; or maintained in the 0NaB medium. Included in the NaH medium was the NHE inhibitor 5‐(N‐ethyl‐N‐isopropyl) amiloride (EIPA). The steady‐state pHi was then determined by spectrofluorometric measurement of bis(carboxyethyl)‐5(6)‐carboxyfluoroscein (BCECF) fluorescence. EIPA (0.1 μM) significantly (P < 0.05) inhibited the pHi recovery produced by NaH medium. Moreover, the pHi in NaH medium was not significantly (P < 0.05) different than NaB medium. These results indicate that a Na+‐dependent, bicarbonate‐independent pHi regulatory mechanism, with a pharmacological characteristic consistent with an NHE, is present in capacitated spermatozoa. In support of the involvement of a sperm NHE, we also demonstrated specific immunoreactivity for a 100 kDa porcine sperm protein using an NHE‐1 specific monoclonal antibody. Interestingly, no significant (P = 0.79) effect was seen on the P‐initiated AR when EIPA was included in either the NaH or NaB medium. While these findings suggest that inhibition of NHE‐dependent pHi regulation in capacitated spermatozoa is not sufficient to block initiation of the AR by P, they do not preclude the possibility that an NHE mediates the regulation of capacitation or sperm motility. Mol. Reprod. Dev. 52:189–195, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
Abstract: The role of transmembrane processes that are dependent on external anions in the regulation of cerebral intracellular pH (pHi), high-energy metabolites, and lactate was investigated using 31P and 1H NMR spectroscopy in an ex vivo brain slice preparation. During oxygenated superfusion, removal of external HCO3?/CO2 in the presence of Na+ led to a sustained split of the inorganic phosphate (Pi) peak so that the pHi indicated by one part of the peak was 0.38 pH units more alkaline and by the other part 0.10 pH units more acidic at 5 min than in the presence of HCO3?. The pH in the compartment with a higher pHi value returned to 7.29 ± 0.04 by 10.5 min of superfusion in a HCO3?-free medium, whereas the pHi in an acidic compartment was reduced to 7.02. In the presence of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid or the absence of external Cl?, removal of HCO3? caused alkalinization without split of the Pi peak. Both treatments reduced the rate of pHi normalization following alkalinization. Simultaneous omission of external HCO3? and Na+ did not inhibit alkalinization of the pHi following CO2 exit. All these data show that the acid loading mechanism at neutral pHi is mediated by an Na+-independent anion transport. During severe hypoxia, pHi dropped from 7.29 ± 0.05 to 6.13 ± 0.16 and from 7.33 ± 0.03 to 6.67 ± 0.05 in the absence and presence of HCO3?, respectively, in Na+-containing medium. Lactate accumulated to 18.7 ± 2.8 and 19.6 ± 1.5 mmol/kg under the respective conditions. In the HCO3?-free medium supplemented with 1 mM amiloride, the pHi fell only to 6.94 ± 0.08 despite the lactate concentration of 18.9 ± 2.4 mmol/kg. Acidification caused by hypoxia was also small in the slice preparations superfused in the absence of both HCO3? and Cl?, as the pHi was 7.01 ± 0.12 at a lactate concentration of 24.5 ± 2.4 mmol/kg. These data indicate that apart from anaerobic glucose metabolism, separate acidifying mechanisms are functioning during hypoxia under these conditions. Recovery of phosphocreatine levels following reoxygenation was >75% relative to the prehypoxic level in the slice preparations superfused in the absence of HCO3? but <47% in those preparations superfused without HCO3? and Cl?. This indicates that either neutral pHi or absence of Cl? during hypoxia was deleterious to the energy metabolism. The present data indicate that Cl?/HCO3? exchange mechanisms have distinct roles in cerebral H+ homeostasis depending on the level of pHi and energy state.  相似文献   

7.
A new kinetic model of the Na+/H+ exchanger (NHE) was developed by fitting a variety of major experimental findings, such as ion-dependencies, forward/reverse mode, and the turnover rate. The role of NHE in ion homeostasis was examined by implementing the NHE model in a minimum cell model including intracellular pH buffer, Na+/K+ pump, background H+, and Na+ fluxes. This minimum cell model was validated by reconstructing recovery of pHi from acidification, accompanying transient increase in [Na+]i due to NHE activity. Based on this cell model, steady-state relationships among pHi, [Na+]I, and [Ca2+]i were quantitatively determined, and thereby the critical level of acidosis for cell survival was predicted. The acidification reported during partial blockade of the Na+/K+ pump was not attributed to a dissipation of the Na+ gradient across the membrane, but to an increase in indirect H+ production. This NHE model, though not adapted to the dimeric behavioral aspects of NHE, can provide a strong clue to quantitative prediction of degree of acidification and accompanying disturbance of ion homeostasis under various pathophysiological conditions.  相似文献   

8.
We have investigated the involvement of intracellular pH (pHi) in the regulation of P-glycoprotein (P-gp) in K562/DOX cells. The selective Na+/H+ exchanger1 (NHE1) inhibitor cariporide and the “high K+” buffer were used to induce the sustained intracellular acidification of the K562/DOX cells that exhibited more alkaline pHi than the K562 cells. The acidification resulted in the decreased P-gp activity with increased Rhodamine 123 (Rh123) accumulation in K562/DOX cells, which could be blocked by the P-gp inhibitor verapamil. Moreover, the acidification decreased MDR1 mRNA and P-gp expression, and promoted the accumulation and distribution of doxorubicin into the cell nucleus. Interestingly, these processes were all pHi and time-dependent. Furthermore, the change of the P-gp expression was reversible with the pHi recovery. These data indicate that the tumor multidrug resistance (MDR) mediated by P-gp could be reversed by sustained intracellular acidification through down-regulating the P-gp expression and activity, and there is a regulative link between the pHi and P-gp in K562/DOX cells.  相似文献   

9.
The effect of heparin-induced capacitation on the intracellular pH (pHi) of individual bovine sperm was determined with image analysis. Sperm were loaded with the acetoxymethyl ester of the pH sensitive fluorescent indicator, 2′,7′-bis(carboxyethyl)-5(6)-carboxy-fluorescein (BCECF). The pHi of 5303 sperm was evaluated from a total of five bulls at .5, 2, 3, 4, and 5 h of incubation. The pHi did not differ between the sperm head and mid-piece (P > 0.05). An increase in sperm head pHi was seen in heparin-treated sperm at 3, 4, and 5 h of incubation relative to sperm incubated without heparin (control, P < 0.05). At 5 h of incubation, the pHi in heparin-treated sperm was 6.92 ± 0.07, while control-treated sperm pHi was 6.70 ± 0.03. Initially a normal frequency distribution was seen for sperm pHi in both heparin- and control-treated sperm. As the incubation progressed, the frequency distribution began to skew towards higher pHi in both samples but was more dispersed for the heparin-treated sperm. Following an NH4Cl-induced alkaline load, the pHi of both control- and heparin-treated sperm recovered toward the resting pHi with a half-time of recovery of 1.5–1.7 min. The recovery of sperm pHi was not due to leakage of NH4+ into sperm because recovery also occurred with trimethylamine. The instantaneous velocity of the pHi recovery (vi) was dependent on pHi and decreased as pHi decreased. Capacitation by heparin was associated with an 81% decrease in vi at a pHi of 7.00, but there was no effect of capacitation on the proton buffering power of the sperm, which was 87 ± 8 mM/pH unit. Results demonstrate that both the regulation of pHi and resting pHi were altered during capacitation of bovine sperm by heparin. © 1995 Wiley-Liss, Inc.  相似文献   

10.
The membrane topology of the human Na(+)/H(+) exchanger isoform 1 (NHE1) was assessed by substituted cysteine accessibility analysis. Eighty-three cysteine residues were individually introduced into a functional cysteineless NHE1, and these mutants were expressed in the exchanger-deficient PS120 cells. The topological disposition of introduced cysteines was determined by labeling with a biotinylated maleimide in the presence or absence of preincubation with the membrane-impermeable sulfhydryl reagent, 2-trimethylammoniumethyl-methanethiosulfonate in streptolysin O-permeabilized or nonpermeabilized cells. We proposed a new model for the topology of NHE1 that is significantly different from the model derived from hydropathy analysis. In this model, NHE1 is composed of 12 transmembrane segments (TMs) with the N and C termini located in the cytosol. The large, last extracellular loop in the membrane domain of the original model was suggested to comprise an intracellular loop, a new transmembrane segment (TM11), and an extracellular loop in the new model. Interestingly, cysteines at 183 and 184 and at 324 and 325 mapped to intracellular loops connecting TMs 4 and 5 (IL2) and TMs 8 and 9 (IL4), respectively, were accessible to sulfhydryl reagents from the outside. Furthermore, exchange activities of two mutants, R180C and Q181C, within IL2 were markedly inhibited by external MTSET. These data suggest that part of IL2 or IL4 may be located in a pore-lining region that is accessible from either side of the membrane and involved in ion transport.  相似文献   

11.
We previously demonstrated inhibition of Na+-dependent 32Pi transport in canine renal brush-border membranes in association with NAD+-induced ADP ribosylation of membrane protein(s) and postulated that NAD+ inhibits Pi transport across the brush-border membrane via ADP ribosylation. Recently it was shown that incubation of rat brush-border membrane with NAD+ resulted in release of Pi which was prevented by EDTA. It was proposed that NAD+-mediated inhibition of 32Pi transport might occur through this mechanism. To determine whether NAD+ inhibited 32Pi transport by a mechanism other than or in addition to release of Pi, we compared Na+-dependent 32Pi counterflow in brush-border membrane equilibrated with Pi or with Pi generated from NAD+. Release of Pi from NAD+ incubated with brush-border membrane was confirmed. The increased uptake of 32Pi which was demonstrated in brush-border membrane equilibrated with Pi was not measured when intravesicular Pi was generated from a concentration of NAD+ which effected ADP-ribosylation of brush border membranes (100 μM NAD+). In contrast, increased uptake of 32Pi was demonstrated when intravesicular Pi was generated from 1 μM NAD+ which did not effect ADP ribosylation. Mg2+-dependent ADP ribosylation of brush-border membrane incubated with NAD+ was demonstrated which persisted during the time interval of 32Pi uptake measurements. Our findings are compatible with the hypothesis that NAD+-induced ADP ribosylation of brush-border membrane protein(s) results in inhibition of Pi transport across the membrane in vivo. EDTA may act to prevent this inhibition in brush-border membrane by chelation of Mg2+ and decreased ADP ribosylation.  相似文献   

12.
The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (J H +) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and J H + (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and J H + was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and J H + was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea.  相似文献   

13.
The influence of the auxins indole-3-acetic acid (IAA) and 1-napthylene acetic acid (NAA) on K+ channels and their control was examined in stomatal guard cells of Vicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes to record membrane potentials and to monitor K+ channel currents under voltage clamp during exposures to 0.1–100 µM IAA and NAA. Following impalements, challenge with either IAA or NAA in the presence of 10 mM KCl resulted in the concerted modulation of at least four different currents with distinct kinetic characteristics and concentration dependencies. Equivalent concentrations of benzoic acid were wholly without effect. Most striking, current carried by inward-rectifying K+ channels (IK,in) exhibited a bimodal response to both IAA and NAA which was reversed on washing the auxins from the bathing medium. The steady-state current was augmented 1.3- to 2-fold at concentrations between 0.1 and 10 µM and antagonized at concentrations near 30 µM and above. Auxin agonism of IK,in was time- and voltage-independent. By contrast, IK,in inactivation at the higher auxin concentrations was marked by a voltage-dependence and slowing of the kinetics for current activation. Inactivation of IK,in by the auxins was relieved when cytoplasmic pH (pHi) was clamped near 7.0 in the presence of 30 mM Na+-butyrate. In addition to the control of IK,in, current carried by a second class of (outward-rectifying) K+ channels rose in a monotonic and largely voltage-independent manner with auxin concentrations about 10 µM and above, and IAA and NAA also activated an inward-going current with a voltage dependence characteristic of guard cell anion channels. Further changes in background current were consistent with a limited activation of the H+-ATPase. Over the concentration range examined, the auxins evoked membrane hyperpolarizations and depolarizations of up to ±12–19 mV, depending on the free-running membrane potential prevailing before auxin additions. Prolonging exposures to 100 µM auxin beyond 3–5 min frequently elicited rapid transitions to voltages near EK as well as regenerative action potentials. However, in every case the voltage response was a predictable consequence of auxin action on the K+ channels and, at 100 µM auxin, on the anion current. These results demonstrate a control of K+ channel activity by auxin, consistent with the roles of these channels in mediating K+ flux for stomatal movements; the data associate a bimodal characteristic with the activity of IK,in, implicating pHi as a putative intermediate in its control, and offer strong evidence for a multiplicity of signal cascades evoked by auxin; finally, they highlight a coordinate modulation of transport activities by auxin, thereby drawing a close analogy to the pattern of stimulus-response coupling in abscisic acid.  相似文献   

14.
The Na+/H+ exchanger (NHE) is a protein expressed in many mammalian cell types. It is involved in intracellular pH (pHi) homeostasis by exchanging extracellular Na+ for intracellular H+. To date, nine NHE isoforms (NHE1–NHE9) have been identified. NHE1 is the most predominant isoform expressed in mammalian cardiac muscle. A novel series of substituted (quinolinecarbonyl)guanidine derivatives were designed and synthesized as NHE inhibitors. Most compounds can inhibit NHE1‐mediated platelet swelling in a concentration‐dependent manner, among which compound 7f was the most active and more potent than cariporide. Furthermore, compound 7f has also been demonstrated to exhibit the in vivo cardioprotective effects against SD rat myocardial ischemic‐reperfusion injury superior to those of cariporide.  相似文献   

15.
The effect of glucose on the intracellular pH (pHi) recovery rate (dpHi/dt) and Na+-glucose transporter (SGLT) localization was investigated in HEK-293 cells, a cell line that expresses endogenous NHE1, NHE3, SGLT1, and SGLT2 proteins. The activity of the Na+/H+ exchangers (NHEs) was evaluated by using fluorescence microscopy. The total and membrane protein expression levels were analyzed by immunoblotting. In cells cultivated in 5 mM glucose, the pHi recovery rate was 0.169 ± 0.020 (n = 6). This value did not change in response to the acute presence of glucose at 2 or 10 mM, but decreased with 25 mM glucose, an effect that was not observed with 25 mM mannitol. Conversely, the chronic effect of high glucose (25 mM) increased the pHi recovery rate (~40%, P < 0.05), without changes in the total levels of NHE1, NHE3, or SGLT1 expression, but increasing the total cellular (~50%, P < 0.05) and the plasma membrane (~100%, P < 0.01) content of SGLT2. Treatment with H-89 (10−6 M) prevented the stimulatory effect of chronic glucose treatment on the pHi recovery rate and SGLT2 expression in the plasma membrane. Our results indicate that the effect of chronic treatment with a high glucose concentration is associated with increased NHEs activity and plasma membrane expression of SGLT2 in a protein kinase A-dependent way. The present results reveal mechanisms of glucotoxicity and may contribute to understanding the diabetes-induced damage of this renal epithelial cell.  相似文献   

16.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

17.
Neuronal excitation leads to an increase of the extracellular K+ concentration ([K+]o) in brain. This increase has at least two energy-consuming consequences: (1) a depolarization-mediated change in intracellular pH (pHi) in astrocytes due to depolarization-mediated increased activity of the acid-extruding Na+/bicarbonate transporter NBCe1 (driven by secondary active transport, supported by ion gradients established by the Na+, K+-ATPase); and (2) activation of cellular reuptake of K+ mediated by the Na+, K+-ATPase in both neurons and astrocytes. Astrocytic, but not neuronal increase in NBCe1 activity and pHi is also seen after chronic treatment with either of the two anti-bipolar drugs carbamazepine or valproic acid. The third ‘classical’ anti-bipolar drug, ‘lithium’ increases astrocytic pHi by a different mechanism (stimulation of the acid extruding Na+/H+ exchanger NHE1). The acid extruder fluxes, which depend upon the change in pHi per time unit (ΔpHi/Δt) and intracellular buffering power, have not been established in most of these situations. Therefore their stimulatory effects on energy metabolism has not been quantitated. This has been done in the present study in cultured mouse astrocytes. pHi was determined using the fluorescent pH-sensitive indicator BCECF–AM and an Olympus IX71 live cell imaging fluorescence microscope. Molar acid extrusion fluxes (indicating transporter activity) were determined as pHi changes/min during recovery after acid-loading with NH3/NH4 +, NBCe1 mRNA and protein expression in the cultured cells by, respectively RT-PCR and Western blotting. Drug-induced up-regulation of acid extrusion flux was slow and less than physiologically seen after increase in K+ concentration. Energetically, K+ uptake is much costlier than NBCe1 activity.  相似文献   

18.
Parathyroid hormone (PTH) has previously been shown to enhance the transepithelial secretion of Cl? and HCO3? across the intestinal epithelia including Caco-2 monolayer, but the underlying cellular mechanisms are not completely understood. Herein, we identified the major signaling pathways that possibly mediated the PTH action to its known target anion channel, i.e., cystic fibrosis transmembrane conductance regulator anion channel (CFTR). Specifically, PTH was able to induce phosphorylation of protein kinase A and phosphoinositide 3-kinase. Since the apical HCO3? efflux through CFTR often required the intracellular H+/HCO3? production and/or the Na+-dependent basolateral HCO3? uptake, the intracellular pH (pHi) balance might be disturbed, especially as a consequence of increased endogenous H+ and HCO3? production. However, measurement of pHi by a pH-sensitive dye suggested that the PTH-exposed Caco-2 cells were able to maintain normal pH despite robust HCO3? transport. In addition, although the plasma membrane Na+/K+-ATPase (NKA) is normally essential for basolateral HCO3? uptake and other transporters (e.g., NHE1), PTH did not induce insertion of new NKA molecules into the basolateral membrane as determined by membrane protein biotinylation technique. Thus, together with our previous data, we concluded that the PTH action on Caco-2 cells is dependent on PKA and PI3K with no detectable change in pHi or NKA abundance on cell membrane.  相似文献   

19.
This study sought to investigate effects of short-chain fatty acids and CO2 on intracellular pH (pHi) and mechanisms that mediate pHi recovery from intracellular acidification in cultured ruminal epithelial cells of sheep. pHi was studied by spectrofluorometry using the pH-sensitive fluorescent indicator 2′,7′-bis (carboxyethyl)-5(6′)-carboxyfluorescein acetoxymethyl ester (BCECF/AM). The resting pHi in N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid (HEPES)-buffered solution was 7.37 ± 0.03. In HEPES-buffered solution, a NH4 +/NH3-prepulse (20 mM) or addition of butyrate (20 mM) led to a rapid intracellular acidification (P < 0.05). Addition of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; 10 μM) or HOE-694 (200 μM) inhibited pHi recovery from an NH4 +/NH3-induced acid load by 58% and 70%, respectively. pHi recovery from acidification by butyrate was reduced by 62% and 69% in the presence of EIPA (10 μM) and HOE-694 (200 μM), respectively. Changing from HEPES- (20 mM) to CO2/HCO3 -buffered (5%/20 mM) solution caused a rapid decrease of pHi (P < 0.01), followed by an effective counter-regulation. 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS; 100 μM) blocked the pHi recovery by 88%. The results indicate that intracellular acidification by butyrate and CO2 is effectively counter-regulated by an Na+/H+ exchanger and by DIDS-sensitive, HCO3 -dependent mechanism(s). Considering the large amount of intraruminal weak acids in vivo, both mechanisms are of major importance for maintaining the pHi homeostasis of ruminal epithelial cells. Accepted: 8 March 2000  相似文献   

20.
Abstract : A unique method for simultaneously measuring interstitial (pHe) as well as intracellular (pHi) pH in the brains of lightly anesthetized rats is described. A 4-mm microdialysis probe was inserted acutely into the right frontal lobe in the center of the area sampled by a surface coil tuned for the collection of 31P-NMR spectra. 2-Deoxyglucose 6-phosphate (2-DG-6-P) was microdialyzed into the rat until a single NMR peak was detected in the phosphomonoester region of the 31P spectrum. pHe and pHi values were calculated from the chemical shift of 2-DG-6-P and inorganic phosphate, respectively, relative to the phosphocreatine peak. The average in vivo pHe was 7.24 ± 0.01, whereas the average pHi was 7.05 ± 0.01 (n = 7). The average pHe value and the average CSF bicarbonate value (23.5 ± 0.1 mEq/L) were used to calculate an interstitial Pco2 of 55 mm Hg. Rats were then subjected to a 15-min period of either hypercapnia, by addition of CO2 (2.5, 5, or 10%) to the ventilator gases, or hypocapnia (Pco2 < 30 mm Hg), by increasing the ventilation rate and volume. pHe responded inversely to arterial Pco2 and was well described (r2 = 0.91) by the Henderson-Hassel-balch equation, assuming a pKa for the bicarbonate buffer system of 6.1 and a solubility coefficient for CO2 of 0.031. This confirms the view that the bicarbonate buffer system is dominant in the interstitial space. pHi responded inversely and linearly to arterial Pco2. The intracellular effect was muted as compared with pHe (slope = -0.0025, r2 = 0.60). pHe and pHi values were also monitored during the first 12 min of ischemia produced by cardiac arrest. pHe decreases more rapidly than pHi during the first 5 min of ischemia. After 12 min of ischemia, pHe and pHi values were not significantly different (6.44 ± 0.02 and 6.44 ± 0.03, respectively). The limitations, advantages, and future uses of the combined microdialysis/31P-NMR method for measurement of pHe and pHi are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号