首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulated mast cells in atherosclerotic plaques secrete a high level of tryptase that may participate in the pathogenesis of atherosclerotic disease by diverse pathways. However, the role of tryptase in the lipid metabolism of macrophages remains to be defined. In the present study, we found that the addition of tryptase into THP-1-derived macrophages increased both intracellular lipid accumulation and total cholesterol level. Tryptase promoting foam cell formation was also observed by transmission electron microscope. These effects were resisted by APC366, a selective inhibitor of mast cell tryptase. Tryptase dramatically resisted 22RHC induced activation of LXRα protein expression, which can be reversed by SAM-11 (a PAR-2-specific neutralizing antibody) and reduced LXRα, ABCG1, ABCA1 and SREBP-1c mRNA levels and ABCG1 protein level, which were all blocked by APC366. PAR-2 agonist also redeemed 22RHC stimulation to activate LXRα, ABCG1 protein expression, and mRNA levels of LXRα and its target genes in both THP-1-derived macrophages and primary human monocyte-derived macrophages. In primary macrophages that were first transfected with PAR-2 siRNA and then treated with tryptase, both the ABCG1 protein level and mRNA levels of LXRα and ABCG1 were higher than those in the control siRNA-treated cells. Taken together, our data clarified the PAR-2 expression of human macrophages and suggested that tryptase might promote lipid accumulation in macrophages and foam cell formation by suppressing LXRα activation via PAR-2/LXRα/LXRα target genes signaling pathway. This investigation sheds a new light on the role of tryptase in foam cell formation and pathogenesis of atherosclerosis.  相似文献   

2.

Background

Mounting evidence points to lipid accumulation in the diseased kidney and its contribution to progression of nephropathy. We recently found heavy lipid accumulation and marked dysregulation of lipid metabolism in the remnant kidneys of rats with chronic renal failure (CRF). Present study sought to determine efficacy of niacin supplementation on renal tissue lipid metabolism in CRF.

Methods

Kidney function, lipid content, and expression of molecules involved in cholesterol and fatty acid metabolism were determined in untreated CRF (5/6 nephrectomized), niacin-treated CRF (50 mg/kg/day in drinking water for 12 weeks) and control rats.

Results

CRF resulted in hypertension, proteinuria, renal tissue lipid accumulation, up-regulation of scavenger receptor A1 (SR-A1), acyl-CoA cholesterol acyltransferase-1 (ACAT1), carbohydrate-responsive element binding protein (ChREBP), fatty acid synthase (FAS), acyl-CoA carboxylase (ACC), liver X receptor (LXR), ATP binding cassette (ABC) A-1, ABCG-1, and SR-B1 and down-regulation of sterol responsive element binding protein-1 (SREBP-1), SREBP-2, HMG-CoA reductase, PPAR-α, fatty acid binding protein (L-FABP), and CPT1A. Niacin therapy attenuated hypertension, proteinuria, and tubulo-interstitial injury, reduced renal tissue lipids, CD36, ChREBP, LXR, ABCA-1, ABCG-1, and SR-B1 abundance and raised PPAR-α and L-FABP.

Conclusions and general significance

Niacin administration improves renal tissue lipid metabolism and renal function and structure in experimental CRF.  相似文献   

3.
Proteinuria is a common feature for almost all glomerular diseases and reflects the severity of the glomerular lesion. The presence of a large amount of proteins in tubular fluid, however, may also contribute to the development of RIF (renal interstitial fibrosis). Endocytosis of albumin in proximal tubular cells triggers PKC (protein kinase C)-dependent generation of reactive oxygen species and secretion of chemokines. As a family including 12 isozymes, which PKC isozymes participate in RIF is still unclear. EMT (epithelial-mesenchymal transdifferentiation) of RTECs (renal tubular epithelial cells) plays a crucial role in the progress of RIF induced by proteinuria. In the present study, we investigated the role of classical PKC isozymes in the proteinuria-induced EMT of RTECs. Employing immunochemical staining, we found that PKC-α, -βI and -βII were expressed in glomerulus and in RTECs in both normal and diseased renal tissues, while PKC-γ was only expressed in podocytes in the glomerulus. Treatment of HK-2 cells with extracted urinary proteins resulted in EMT, as evidenced by morphological changes, decreased E-cadherin expression, increased α-SMA (α-smooth muscle actin) expression, as well as production of type I collagen and fibronectin. Western blot analysis of PKC isozymes in the cytosolic compared with membrane fraction revealed translocation of PKC-α and -βI, but not PKC-βII, in HK-2 cells undergoing EMT. Pretreatment with selective PKC-α inhibitor G-6976 or PKC-β inhibitor significantly attenuated EMT induced by urinary proteins. In summary, the present study suggested that PKC-α and -βI play critical roles in the EMT of RTECs in response to urinary proteins.  相似文献   

4.
5.
Vascular calcification is recognized as an independent predictor of cardiovascular mortality, particularly in subjects with chronic kidney disease. However, the pathways by which dysregulation of lipid and mineral metabolism simultaneously occur in this particular population remain unclear. We have shown that activation of the farnesoid X receptor (FXR) blocks mineralization of bovine calcifying vascular cells (CVCs) and in ApoE knock-out mice with 5/6 nephrectomy. In contrast to FXR, this study showed that liver X receptor (LXR) activation by LXR agonists and adenovirus-mediated LXR overexpression by VP16-LXRα and VP16-LXRβ accelerated mineralization of CVCs. Conversely, LXR inhibition by dominant negative (DN) forms of LXRα and LXRβ reduced calcium content in CVCs. The regulation of mineralization by FXR and LXR agonists was highly correlated with changes in lipid accumulation, fatty acid synthesis, and the expression of sterol regulatory element binding protein-1 (SREBP-1). The rate of lipogenesis in CVCs through the SREBP-1c dependent pathway was reduced by FXR activation, but increased by LXR activation. SREBP-1c overexpression augmented mineralization in CVCs, whereas SREBP-1c DN inhibited alkaline phosphatase activity and mineralization induced by LXR agonists. LXR and SREBP-1c activations increased, whereas FXR activation decreased, saturated and monounsaturated fatty acids derived from lipogenesis. In addition, we found that stearate markedly promoted mineralization of CVCs as compared with other fatty acids. Furthermore, inhibition of either acetyl-CoA carboxylase or acyl-CoA synthetase reduced mineralization of CVCs, whereas inhibition of stearoyl-CoA desaturase induced mineralization. Therefore, a stearate metabolite derived from lipogenesis might be a risk factor for the development of vascular calcification.  相似文献   

6.
The liver X receptor (LXR) signaling pathway is an important modulator of atherosclerosis, but the relative importance of the two LXRs in atheroprotection is incompletely understood. We show here that LXRα, the dominant LXR isotype expressed in liver, plays a particularly important role in whole-body sterol homeostasis. In the context of the ApoE(-/-) background, deletion of LXRα, but not LXRβ, led to prominent increases in atherosclerosis and peripheral cholesterol accumulation. However, combined loss of LXRα and LXRβ on the ApoE(-/-) background led to an even more severe cholesterol accumulation phenotype compared to LXRα(-/-)ApoE(-/-) mice, indicating that LXRβ does contribute to reverse cholesterol transport (RCT) but that this contribution is quantitatively less important than that of LXRα. Unexpectedly, macrophages did not appear to underlie the differential phenotype of LXRα(-/-)ApoE(-/-) and LXRβ(-/-)ApoE(-/-) mice, as in vitro assays revealed no difference in the efficiency of cholesterol efflux from isolated macrophages. By contrast, in vivo assays of RCT using exogenously labeled macrophages revealed a marked defect in fecal sterol efflux in LXRα(-/-)ApoE(-/-) mice. Mechanistically, this defect was linked to a specific requirement for LXRα(-/-) in the expression of hepatic LXR target genes involved in sterol transport and metabolism. These studies reveal a previously unrecognized requirement for hepatic LXRα for optimal reverse cholesterol transport in mice.  相似文献   

7.
Chronic renal failure (CRF) is associated with malnutrition and renal tissue accumulation of lipids, which can contribute to progression of renal disease. This study was designed to explore the effect of a high-calorie diet on pathways involved in lipid metabolism in the remnant kidney of rats with CRF. 5/6 nephrectomized rats were randomized to receive a regular diet (3.0 kcal/g) or a high-calorie diet (4.5 kcal/g) for 12 weeks. Renal lipid contents and abundance of molecules involved in cholesterol and fatty acid metabolism were studied. The CRF group consuming a regular diet exhibited growth retardation; azotemia; proteinuria; glomerulosclerosis; tubulointerstitial injury; heavy lipid accumulation in the remnant kidney; up-regulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), ATP-binding cassette transporter-1 (ABCA1), liver X receptor (LXR) α/β, carbohydrate-responsive element binding protein (ChREBP) and acyl-CoA carboxylase (ACC); and down-regulation of peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyltransferase-1 (CPT1) and liver-type fatty acid binding protein (L-FABP). The high-calorie diet restored growth; reduced the severity of tubulointerstitial injury, proteinuria and azotemia; partially lowered renal tissue lipid contents; attenuated the up-regulation of mediators of lipid influx (LOX-1), lipid efflux (LXR-α/β and ABCA1) and fatty acid biosynthesis (ChREBP and ACC); and reversed the down-regulation of factors involved in fatty acid oxidation (PPAR-α, CPT1 and L-FABP). In conclusion, a high-calorie diet restores growth, improves renal function and structure, and lowers lipid burden in the remnant kidney. The latter is associated with and most likely due to reduction in lipid influx and enhancement of fatty acid oxidation.  相似文献   

8.
9.
10.
11.
12.
α-Lipoic acid (α-LA), a key cofactor in cellular energy metabolism, has protective activities in atherosclerosis, yet the detailed mechanisms are not fully understood. In this study, we examined whether α-LA affects foam cell formation and its underlying molecular mechanisms in murine macrophages. Treatment with α-LA markedly attenuated oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, which was due to increased cholesterol efflux. Additionally, α-LA treatment dose-dependently increased protein levels of ATP-binding cassette transporter A1 (ABCA1) and ABCG1 but had no effect on the protein expression of SR-A, CD36, or SR-BI involved in cholesterol homeostasis. Furthermore, α-LA increased the mRNA expression of ABCA1 and ABCG1. The upregulation of ABCA1 and ABCG1 by α-LA depended on liver X receptor α (LXRα), as evidenced by an increase in the nuclear levels of LXRα and LXRE-mediated luciferase activity and its prevention of the expression of ABCA1 and ABCG1 after inhibition of LXRα activity by the pharmacological inhibitor geranylgeranyl pyrophosphate (GGPP) or knockdown of LXRα expression with small interfering RNA (siRNA). Consistently, α-LA-mediated suppression of oxLDL-induced lipid accumulation was abolished by GGPP or LXRα siRNA treatment. In conclusion, LXRα-dependent upregulation of ABCA1 and ABCG1 may mediate the beneficial effect of α-LA on foam cell formation.  相似文献   

13.
Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets associated with cholesterosis in GBECs. In conclusion, the present findings indicate that the anti-lipid deposition action of 22(R)-hydroxycholesterol combined with pioglitazone involves the activation of the PPARγ–LXRα–ABCA1 pathway, increased ABCA1 expression and the efflux of cholesterol from GBECs. Thus, 22(R)-hydroxycholesterol synergistically combined with pioglitazone to produce a remarkable effect on lipid deposition in cholesterosis GBECs.  相似文献   

14.
The organic solute transporter (OST)(alpha)-OST(beta) is an unusual heteromeric carrier expressed in a variety of tissues including the small intestine, colon, liver, biliary tract, kidney, and adrenal gland. In polarized epithelial cells, OSTα-OSTβ protein is localized on the basolateral membrane and functions in the export or uptake of bile acids and steroids. This article reviews recent results including studies of knockout mouse models that provide new insights to the role of OSTα-OSTβ in the compartmentalization and metabolism of these important lipids.  相似文献   

15.
16.
We investigated the effect of cineole on the expression of genes related to reverse cholesterol transport and hepatic fatty acid metabolism. Cineole, a small aroma compound in teas and herbs, significantly stimulated the transactivation of liver X receptor modulator (LXR)-α and LXR-β. The mRNA and protein expression of LXRs and their target genes, including ABCA1 and ABCG1, was significantly increased in macrophages stimulated with cineole. This led to the subsequent removal of cholesterol from the cells. Interestingly, cineole showed tissue-selective LXR induction: hepatocytes stimulated with cineole showed significantly reduced expression of LXR-α and LXR-α-responsive genes, including FAS and SCD-1 (P <0.05). Accordingly, hepatocytes treated with cineole displayed reduced cellular lipid accumulation compared with control cells, as assessed by Oil Red O lipid staining and cholesterol quantification. These results suggest that cineole is a selective LXR modulator that regulates the expression of key genes in reverse cholesterol transport in macrophages without inducing lipogenesis in hepatocytes. This selective LXR modulator may have practical implications for the development of hypocholesterolemic or anti-atherosclerotic agents and also suggests.  相似文献   

17.
18.
Nimbolide is a bioactive compound found in Azadirachta indica. This work was devised to investigate the potential effects of nimbolide on intracellular lipid deposition and its associated redox modulation in primary hepatocytes (Heps). Lipid accumulation was induced in Heps by supplementing 1 mM oleic acid for 24 h which was marked by significant accumulation of lipids. The results demonstrated that nimbolide can decrease intracellular cholesterol, free fatty acids and triglycerides. Nimbolide may also improve hepatocytes function through its antioxidant effects by inhibiting oxidative DNA damage and lipid peroxidation by curtailing the reactive oxygen species levels. Further it also restore the mitochondrial potential, improving the endogenous antioxidant levels such as GSH and antioxidant enzyme activities. Nimbolide increased (P?<?0.05) liver X receptor-α (LXRα), peroxisome proliferator-activated receptor-γ (PPARγ) and sterol regulatory element-binding protein-1c (SREBP1c) gene expression in Heps. The biological significance of nimbolide may involve hypolipidemic effect, lipid peroxidation inhibition, DNA damage inhibition, ROS inhibition, restoring mitochondrial function, increases in GSH and SOD & CAT activities, and direct regulation of LXRα, PPARγ and SREBP1c gene expression. Nimbolide may be used as effective lipid lowering compound and lipid deposition-induced Heps changes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号