首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The chiral pesticide enantiomers often have different toxic effects and environmental behaviors, which suggests that the risk assessments should be on an enantiomeric level. In this work, the chiral separation of the napropamide enantiomers and the stereoselective degradation in tomato, cucumber, rape, cabbage, and soil were investigated. Napropamide enantiomers could be separated absolutely by high‐performance liquid chromatography (HPLC) using a Chiralpak IC column with a resolution factor of 11.75 under the optimized condition. Solid phase extraction (SPE) was used for cleanup of the enantiomers in the vegetable samples. The residue analysis method was validated. Good linearities (R2 = 0.9997) and recoveries (71.43% ‐97.64%) were obtained. The limits of detection (LOD) were 0.05 mg/kg in soil and 0.20 mg/kg in vegetables. The results of degradation showed that napropamide dissipated rapidly in vegetables with half‐lives of only 1.13–2.21 days, but much more slowly in soil, with a half‐life of 11.95 d. Slight stereoselective degradation of the two enantiomers was only observed in cabbage, with enantiomeric fraction (EF) = 0.46, and there was no enantioselectivity in the other vegetables. The degradation of napropamide in the five matrixes was fast, and there was no enantioselectivity. Chirality 28:108–113, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
For almost four decades, the chiral fungicides metalaxyl and furalaxyl have been in use in plant protection on a global scale. Both substances are distributed as racemic mixtures, yet the desirable interference in nucleic acid synthesis of harmful fungi only occurs by the (‐)‐R‐enantiomer. As enantioselective degradation in Scheyern (Germany) and Yaoundé (Cameroon) soils has been documented, the influence of 50 isolated microorganisms on the R/S ratio was investigated. A high‐pressure liquid chromatography method with a chiral column to separate enantiomers of metalaxyl and furalaxyl, and subsequent detection by tandem mass spectrometry, was employed. Only one of these microorganisms, a strain of Brevibacillus brevis, showed an enantioselective degradation pattern in liquid culture; the respective (‐)‐R‐enantiomers were preferably degraded. Moreover, (‐)‐R‐furalaxyl was degraded faster in cultures supplemented simultaneously with both fungicides of the same concentration. Chirality 25:336–340, 2013. © 2013 Wiley‐Liss Inc. Chirality 00:000‐000:, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R‐enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R‐enantiomer (metalaxyl‐M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high‐performance liquid chromatography tandem mass spectroscopy (HPLC‐MS/MS). The enantioselective degradation and chiral stability of metalaxyl‐M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one‐time spray application of metalaxyl‐M wettable powder. It was found that R‐metalaxyl was not chirally stable and the inactive S‐metalaxyl was detected in tomato fruits. At day 40, S‐metalaxyl derived from R‐metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R‐metalaxyl acid and S‐metalaxyl acid were both observed in tomato, and the ratio of S‐metalaxyl acid to the sum of S‐ and R‐metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half‐life of the S‐enantiomer was longer than the R‐enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382–386, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The enantioselective degradation behavior of the chiral insecticide dinotefuran in cucumber and soil was investigated under greenhouse conditions based on the method established with a normal‐phase high‐performance chromatography (HPLC) on a ChromegaChiral CCA column (250 × 4.6 mm, 5 µm, ES Industries). The linearity range, matrix effect, precision, and accuracy of the method were evaluated and the method was then successfully applied for the enantioselective analysis of dinotefuran in cucumber and soil. Significant enantioselectivity of degradation was observed in soil according to the results. The (+)‐dinotefuran was more persistent in soil with half‐life of 21.7 d, which is much longer than that of (–)‐dinotefuran (16.5 d). In cucumber, the (–)‐dinotefuran also tended to be preferentially degraded both in foliar and douche treatment. However, the statistical analysis indicated the enantioselectivity of degradation in cucumber was not significant. The research provides the first report concerning the enantioselective degradation of dinotefuran enantiomers and the results can be used for understanding the insect‐controlling effect and food safety evaluation. Chirality 27:137–141, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
A new chiral stationary phase (CSP) based on macrocyclic amide receptor was prepared starting from (1R,2R)‐1,2‐diphenylethylenediamine. The new CSP was successfully applied to the resolution of various N‐(substituted benzoyl)‐α‐amino amides with reasonably good separation factors and resolutions (α = 1.75 ~ 2.97 and RS = 2.89 ~ 6.82 for 16 analytes). The new CSP was also applied to the resolution of 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs including bendroflumethiazide and methylchlothiazide and metolazone. The resolution results for 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs were also reasonably good. Chirality 28:253–258, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
综述了近10 年来手性药物分离检测方法的发展,包括高效液相色谱法、气相色谱法、毛细管电泳法,以及超临界流体色谱法等,旨在为该领域的进一步发展提供参考。  相似文献   

7.
New and original heterocyclic α-enamido phosphine chiral solutes were prepared: four structurally similar racemates with the chirality center placed on the phosphorus atom, and four other related pairs of enantiomers with chirality borne by the carbon atoms of the phospholane ring. The structural variations were placed on an aliphatic heterocycle (six- or seven-member rings) and on the carbamate function (methyl or t-butyl). Their separation was achieved on a commercial cellulose tris-(3,5-dimethylphenylcarbamate) stationary phase (Lux Cellulose-1, Phenomenex) in supercritical fluid chromatography (SFC). The effects of molecular structure on SFC retention and enantioresolution were studied. Among these eight pairs of enantiomers, some reversal of elution order between similar compounds was observed. The effect of changing the organic solvent (methanol and ethanol) and its proportion (between 5 and 40%) in the mobile phase was investigated. Retention data were collected over the temperature range 0–50 °C, and the results interpreted from thermodynamic aspects. Chirality, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Permethrin (PM), cypermethrin (CP), and cyfluthrin (CF) are three important synthetic pyrethroids, which contain two, four, and four enantiomeric pairs (diastereomers) and thus have four, eight, and eight stereoisomers, respectively. In this study, the stereo‐ and enantioselective degradation of PM, CP, and CF in a Shijiazhuang alkaline yellow soil and a Wuhan acidic red soil were studied in detail by a combination of achiral and chiral high‐performance liquid chromatography (HPLC). The results showed that PM, CP, and CF degraded faster in Shijiazhuang soil than in Wuhan soil, and the dissipation rate followed an order of PM > CF > CP in both soils. The three pyrethroids exhibited similar diastereomer selectivity, while CP and CF showed higher enantioselectivity than PM. Moreover, the trans‐diastereomers degraded faster, and showed higher enantioselectivity than the corresponding cis‐diastereomers. For PM, the enantiomer 1S‐trans‐PM degraded most rapidly in both soils. As for CP and CF, the highest enantioselectivity was observed for diastereomer trans‐3, and the insecticidally active enantiomer 1R‐trans‐αS degraded fastest among the 8 CP or CF stereoisomers in both soils. In addition, the Wuhan acidic soil displayed higher diastereomer and enantiomer selectivity than the Shijiazhuang alkaline soil for the three pyrethroids. Further incubation of CF in an alkaline‐treated Wuhan soil showed that the dissipation rate greatly increased and the diastereo‐ and enantioselectivity significantly decreased after the alkaline treatment process. Chirality 28:72–77, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The behavior and mechanisms of the enantioselective degradation of beta‐cypermethrin were studied in soil. The four isomers were degraded at different rates, and the enantiomer fractions of alpha‐cypermethrin and theta‐cypermethrin exceeded 0.5. Moreover, 3‐phenoxybenzoic acid, phenol, and protocatechuic acid were detected; based on the presence of these metabolites, we predicted the degradation pathway and identified the functional genes that are related to this degradation process. We established quantitative relationships between the data on degradation kinetics and functional genes; we found that the quantitative relationships between different enantiomers differed even under the same conditions, and the genes pobA and pytH played key roles in limiting the degradation rate. Data obtained using path analysis revealed that the same gene had different direct and indirect effects on the degradation of different isomers. A mechanism was successfully proposed to explain the selective degradation of chiral compounds based on the perspective of functional genes. Chirality 27:929–935, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The separation of enantiomers of 16 basic drugs was studied using polysaccharide‐based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate‐based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β‐blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase. Chirality 27:228–234, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD‐H column, with n‐hexane‐ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high‐performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649–655, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Valacyclovir, a potential prodrug for the treatment of patients with herpes simplex and herpes zoster, and its analogs were resolved on two chiral stationary phases (CSPs) based on (3,3’‐diphenyl‐1,1’‐binaphthyl)‐20‐crown‐6 covalently bonded to silica gel. In order to find out an appropriate mobile phase condition, various mobile phases consisting of various organic modifiers in water containing various acidic modifiers were applied to the resolution of valacyclovir and its analogs. When 30% acetonitrile in water containing any of 0.05 M, 0.10 M, or 0.15 M perchloric acid was used as a mobile phase, valacyclovir and its analogs were resolved quite well on the two CSPs with the separation factors (α) in the range of 2.49 ~ 6.35 and resolutions (RS) in the range of 2.95 ~ 12.21. Between the two CSPs, the CSP containing residual silanol protecting n‐octyl groups on the silica surface was found to be better than the CSP containing residual silanol groups. Chirality 27:268–273, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Triadimenol is a widely used triazole fungicide and consists of four stereoisomers with 1R,2S, 1S,2R, 1R,2R, and 1S,2S configurations. The trans‐enantiomeric pair (1R,2S‐isomer and 1S,2R‐isomer) is also called triadimenol‐A and the cis‐enantiomeric pair (1R,2R‐isomer and 1S,2S‐isomer) triadimenol‐B. In this study, the stereoselective degradation and chiral stability of triadimenol in two soils were investigated in details. The dissipation of technical triadimenol, a 6:1 mixture of triadimenol‐A and triadimenol‐B, showed significant epimerization from triadimenol‐A to triadimenol‐B occurred along with the dissipation process. The degradation exhibited some stereoselectivity, resulting in a concentration order of 1S,2S > 1R,2R > 1R,2S > 1S,2R or 1S,2S > 1R,2R > 1S,2R > 1R,2S at the end of the 100 days incubation for Baoding soil or Wuhan soil, respectively. Further incubation of triadimenol‐B revealed no epimerization, i.e. triadimenol‐B was configurationally stable in soil, and 1R,2R‐triadimenol degraded slightly slower in the former part and slightly faster in the later part of the incubation than 1S,2S‐triadimenol. Moreover, by incubation of enantiopure 1S,2R‐triadimenol and 1R,2S‐triadimenol, the results documented the epimerization for each enantiomer occurred at both C‐1 and C‐2 positions. Finally, the present work also documented that the enantiomerization reaction for all the four stereoisomers was nearly negligible in the soils. Chirality 25:355‐360:, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
This review gives an overview of chiral separation principles and their application in enantioselective nano/micro high performance liquid chromatography (n/μ‐HPLC) using chiral monolith. In particular, developments in silica and polymer chiral monolithic stationary phases are presented. The preparation and applications of chiral monoliths, the basic chiral separation principles and the mechanisms are discussed. Chirality 25:314–323, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Mexiletine, an effective class IB antiarrhythmic agent, and its analogs were resolved on three different crown ether‐based chiral stationary phases (CSPs), one (CSP 1 ) of which is based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid and the other two (CSP 2 and CSP 3 ) are based on (3,3’‐diphenyl‐1,1’‐binaphthyl)‐20‐crown‐6. Mexiletine was resolved with a resolution (RS) of greater than 1.00 on CSP 1 and CSP 3 containing residual silanol group‐protecting n‐octyl groups on the silica surface, but with a resolution (RS) of less than 1.00 on CSP 2 . The chromatographic behaviors for the resolution of mexiletine analogs containing a substituted phenyl group at the chiral center on the three CSPs were quite dependent on the phenoxy group of analytes. Namely, mexiletine analogs containing 2,6‐dimethylphenoxy, 3,4‐dimethylphenoxy, 3‐methylphenoxy, 4‐methylphenoxy, and a simple phenoxy group were resolved very well on the three CSPs even though the chiral recognition efficiencies vary with the CSPs. However, mexiletine analogs containing 2‐methylphenoxy group were not resolved at all or only slightly resolved. Among the three CSPs, CSP 3 was found to show the highest chiral recognition efficiencies for the resolution of mexiletine and its analogs, especially in terms of resolution (RS). Chirality 26:272–278, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The enantioseparation of the sherry aroma components 5-oxo-4-hydroxyhexanoic acid γ-lactone (solerone) and 4,5-dihydroxyhexanoic acid γ-lactone (solerole) is achieved, using Chiraspher (Merck) as the chiral HPLC phase and the optical purity ascertained directly by HRGC with heptakis(3-O-acetyl-2,6-di-O-pentyl)-β-cyclodextrin (Lipodex D) as the chiral stationary phase. The absolute configurations of 4,5-dihydroxyhexanoic acid γ-lactones are assigned by 1H-NMR spectral data of diastereomeric α-methoxy-α-trifluoromethylphenylacetic acid (MTPA) esters, according to Mosher's model. Sensory qualities of the isomers are given.  相似文献   

17.
The separation of the four nadolol stereoisomers on Chiralpak® AD by chiral liquid chromatography was carried out at both analytical and preparative scales. A screening of possible mobile‐phase compositions was performed using different alcohol–hydrocarbon mixtures. The results obtained confirm the use of 20:80:0.3 ethanol‐hexane‐diethylamine reported by McCarthy (1994) but introduce other possibilities for the complete resolution of the four nadolol stereoisomers at analytical scale, namely, the mixtures 30–40:70–60:0.3 ethanol‐heptane‐diethylamine. Additionally, this work describes how retention and resolution depend on the ethanol content in hexane and heptane mixtures. The separation of nadolol stereoisomers is also carried out at preparative scale and different alcohol–hydrocarbon compositions are proposed, depending on the target component to be obtained. Particularly, this work presents the experimental separation of the more retained nadolol stereoisomer (RSR‐nadolol) by simulated moving bed (SMB) chromatography using an 80:20:0.3 ethanol‐heptane‐diethylamine mobile phase. For a 2 g/l feed concentration, RSR‐nadolol is 100% recovered at the extract outlet stream, 100% pure, and with a system productivity of 0.65 gRSR‐nadolol/(lbed.h) and a solvent consumption of 9.6 lsolvent/gRSR‐nadolol. Chirality 25:197–205, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
In order to make a preliminary study of substituent effects on the rate and enantioselectivity obtained in esterolytic reactions catalyzed by a lipase from Candida rugosa, a series of racemic esters, derived from some α-alkyl and α-halo phenylacetic acids, were prepared. The reactions were studied at pH 6.0 and 50°C under which conditions uncatalyzed hydrolysis was relatively slow. Reaction samples were studied at different points of time by means of analytical chiral reversed-phase liquid chromatography, which permitted the simultaneous determination of product enantiomeric excess and of the degree of total ester hydrolysis. These data were then used to calculate initial rates as well as enantioselectivity. An increase of the steric bulk of the α-substituent was found to highly decrease the rate of the reaction. On the other hand, rates were higher for the p-nitrophenyl esters than for the corresponding 2-chloroethyl esters. Consistently, the enantioselectivity was found to be higher for the latter type of ester. The esters of the α-halo (bromo and chloro) phenylacetic acids gave mandelic acid as the final product. This was caused by a rapid solvolysis of the α-halo phenylacetic acid initially formed. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Enantioselective degradation of warfarin in soils   总被引:1,自引:0,他引:1  
Lao W  Gan J 《Chirality》2012,24(1):54-59
  相似文献   

20.
Chiral ionic liquids (CILs) with amino acids as cations have been applied as novel chiral ligands coordinated with Cu2+ to separate tryptophan enantiomers in ligand exchange chromatography. Four kinds of amino acid ionic liquids, including [L‐Pro][CF3COO], [L‐Pro][NO3], [L‐Pro]2[SO4], and [L‐Phe][CF3COO] were successfully synthesized and used for separation of tryptophan enantiomers. To optimize the separation conditions, [L‐Pro][CF3COO] was selected as the model ligand. Some factors influencing the efficiency of chiral separation, such as copper ion concentration, CILs concentration, methanol ratio (methanol/H2O, v/v), and pH, were investigated. The obtained optimal separation conditions were as follows: 8.0 mmol/L Cu(OAc)2, 4.0 mmol/L [L‐Pro][CF3COO] ,and 20% (v/v) methanol at pH 3.6. Under the optimum conditions, acceptable enantioseparation of tryptophan enantiomers could be observed with a resolution of 1.89. The results demonstrate the good applicability of CILs with amino acids as cations for chiral separation. Furthermore, a comparative study was also conducted for exploring the mechanism of the CILs as new ligands in ligand exchange chromatography. Chirality 26:160–165, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号