首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The redox potentials of the hemes of the mitochondrial bc(1) complex are dependent on the proton-motive force due to the energy transduction. This allows the membrane potential and pH gradient components to be calculated from the oxidation state of the hemes measured with multi-wavelength cell spectroscopy. Oxidation states were measured in living RAW 264.7 cells under varying electron flux and membrane potential obtained by a combination of oligomycin and titration with a proton ionophore. A stochastic model of bc(1) turnover was used to confirm that the membrane potential and redox potential of the ubiquinone pool could be measured from the redox poise of the b-hemes under physiological conditions assuming the redox couples are in equilibrium. The pH gradient was then calculated from the difference in redox potentials of cytochrome c and ubiquinone pool using the stochastic model to evaluate the ΔG of the bc(1) complex. The technique allows absolute quantification of the membrane potential, pH gradient, and proton-motive force without the need for genetic manipulation or exogenous compounds.  相似文献   

2.
《FEBS letters》1986,208(1):138-142
Evidence is presented for a high proton translocation stoichiometry (H+/ATP) of approx. 9 in ATPase proteoliposomes with extremely low permeability for ions, reconstituted from a thermophilic cyanobacterium. A proportional relation between the phosphate potential (ΔGfp) and the proton-motive force (Δp) was observed in thermodynamic equilibrium. A bulk-to-bulk Δp was imposed by valinomycin-induced K diffusion potentials of different size while the initial ΔGfp was varied. In all cases equilibrium was reached in about 1.5 h. A high H/ATP ratio was also deduced from the relation between the initial rates of ATP synthesis or hydrolysis at varying ΔGfp and Δp. The implications of these results for the mechanism of energy transduction in energy-conserving membranes are discussed.  相似文献   

3.

Reductions in the activities of mitochondrial electron transport chain (ETC) enzymes have been implicated in the pathogenesis of numerous chronic neurodegenerative disorders. Maintenance of the mitochondrial membrane potential (Δψm) is a primary function of these enzyme complexes, and is essential for ATP production and neuronal survival. We examined the effects of inhibition of mitochondrial ETC complexes I, II/III, III and IV activities by titrations of respective inhibitors on Δψm in synaptosomal mitochondria. Small perturbations in the activity of complex I, brought about by low concentrations of rotenone (1–50 nM), caused depolarisation of Δψm. Small decreases in complex I activity caused an immediate and partial Δψm depolarisation, whereas inhibition of complex II/III activity by more than 70% with antimycin A was required to affect Δψm. A similarly high threshold of inhibition was found when complex III was inhibited with myxothiazol, and inhibition of complex IV by more than 90% with KCN was required. The plasma membrane potential (Δψp) had a complex I inhibition threshold of 40% whereas complex III and IV had to be inhibited by more than 90% before changes in Δψp were registered. These data indicate that in synaptosomes, both Δψm and Δψp are more susceptible to reductions in complex I activity than reductions in the other ETC complexes. These findings may be of relevance to the mechanism of neuronal cell death in Parkinson’s disease in particular, where such reductions in complex I activity are present.

  相似文献   

4.
Mitochondria are double membrane organelles involved in various key cellular processes. Governed by dedicated protein machinery, mitochondria move and continuously fuse and divide. These “mitochondrial dynamics” are bi-directionally linked to mitochondrial and cell functional state in space and time. Due to the action of the electron transport chain (ETC), the mitochondrial inner membrane displays a inside-negative membrane potential (Δψ). The latter is considered a functional readout of mitochondrial “health” and required to sustain normal mitochondrial ATP production and mitochondrial fusion. During the last decade, live-cell microscopy strategies were developed for simultaneous quantification of Δψ and mitochondrial morphology. This revealed that ETC dysfunction, changes in Δψ and aberrations in mitochondrial structure often occur in parallel, suggesting they are linked potential targets for therapeutic intervention. Here we discuss how combining high-content and high-throughput strategies can be used for analysis of genetic and/or drug-induced effects at the level of individual organelles, cells and cell populations.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

5.
《BBA》2023,1864(2):148947
The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.  相似文献   

6.
The purpose of this work was to show how the quantitative definition of the different parameters involved in mitochondrial oxidative phosphorylation makes it possible to characterize the mechanisms by which the yield of ATP synthesis is affected. Three different factors have to be considered: (i) the size of the different forces involved (free energy of redox reactions and ATP synthesis, proton electrochemical difference); (ii) the physical properties of the inner mitochondrial membrane in terms of leaks (H+ and cations); and finally (iii) the properties of the different proton pumps involved in this system (kinetic properties, regulation, modification of intrinsic stoichiometry).The data presented different situations where one or more of these parameters are affected, leading to a different yield of oxidative phosphorylation.(1) By manipulating the actual flux through each of the respiratory chain units at constant protonmotive force in yeast mitochondria, we show that the ATP/O ratio decreases when the flux increases. Moreover, the highest efficiency was obtained when the respiratory rate was low and almost entirely controlled by the electron supply. (2) By using almitrine in different kinds of mitochondria, we show that this drug leads to a decrease in ATP synthesis efficiency by increasing the H+/ATP stoichiometry of ATP synthase (Rigoulet M et al. Biochim Biophys Acta 1018: 91-97, 1990). Since this enzyme is reversible, it was possible to test the effect of this drug on the reverse reaction of the enzyme i.e. extrusion of protons catalyzed by ATP hydrolysis. Hence, we are able to prove that, in this case, the decrease in efficiency of oxidative phosphorylation is due to a change in the mechanistic stoichiometry of this proton pump. To our knowledge, this is the first example of a modification in oxidative phosphorylation yield by a change in mechanistic stoichiometry of one of the proton pumps involved. (3) In a model of polyunsaturated fatty acid deficiency in rat, it was found that non-ohmic proton leak was increased, while ohmic leak was unchanged. Moreover, an increase in redox slipping was also involved, leading to a complex picture. However, the respective role of these two mechanisms may be deduced from their intrinsic properties. For each steady state condition, the quantitative effect of these two mechanisms in the decrease of oxidative phosphorylation efficiency depends on the values of different fluxes or forces involved. (4) Finally the comparison of the thermokinetic data in view of the three dimensional-structure of some pumps (X-ray diffraction) also gives some information concerning the putative mechanism of coupling (i.e. redox loop or proton pump) and their kinetic control versus regulation of mitochondrial oxidative phosphorylation.  相似文献   

7.
Arnaud Mourier 《BBA》2010,1797(2):255-468
The main function of mitochondria is energy transduction, from substrate oxidation to the free energy of ATP synthesis, through oxidative phosphorylation. For physiological reasons, the degree of coupling between these two processes must be modulated in order to adapt redox potential and ATP turnover to cellular needs. Such a modulation leads to energy wastage. To this day, two energy wastage mechanisms have been described: the membrane passive proton conductance (proton leak) and the decrease in the coupling efficiency between electrons transfer and proton extrusion at the proton pumps level (redox or proton slipping). In this paper, we describe a new energy wastage mechanism of interest. We show that in isolated yeast mitochondria, the membrane proton conductance is strictly dependent on the external dehydrogenases activity. An increase in their activity leads to an increase in the membrane proton conductance. This proton permeability is independent of the respiratory chain and ATP synthase proton pumps. We propose to name this new mechanism “active proton leak.” Such a mechanism could allow a wide modulation of substrate oxidation in response to cellular redox constraints.  相似文献   

8.
Several different proton pumps were used to generate a proton motive force (delta p, proton motive force across the mitochondrial inner membrane) in isolated rat liver mitochondria, and the relationship between delta p and pump rate was investigated by titrating with various inhibitors of the pumps. It was found that this relationship was the same for mitochondria respiring on succinate irrespective of whether respiration was inhibited with malonate, antimycin or cyanide, indicating that the relationship was independent of the redox state of the respiratory chain. When delta p was generated by either the cytochrome bc1 complex, cytochrome oxidase, both together, or ATP hydrolysis (and transport), the reaction rates (in moles of electrons or ATP) were in the ratio of close to 3:1.5:1:1, respectively, at all accessible values of delta p. This suggests that the proton stoichiometries (H+/e and H+/ATP, where H+/e is the number of protons translocated vectorially across the inner membrane per electron transferred by the respiratory chain and H+/ATP is the number of protons translocated vectorially per ATP molecule hydrolyzed externally) were in the ratio of close to 1:2:3:3, respectively, at all values of delta p. Possible reasons for previous contradictory results are suggested.  相似文献   

9.
The molecular mechanism responsible for the regulation of the mitochondrial membrane proton conductance (G) is not clearly understood. This study investigates the role of the transmembrane potential (ΔΨm) using planar membranes, reconstituted with purified uncoupling proteins (UCP1 and UCP2) and/or unsaturated FA. We show that high ΔΨm (similar to ΔΨm in mitochondrial State IV) significantly activates the protonophoric function of UCPs in the presence of FA. The proton conductance increases nonlinearly with ΔΨm. The application of ΔΨm up to 220 mV leads to the overriding of the protein inhibition at a constant ATP concentration. Both, the exposure of FA-containing bilayers to high ΔΨm and the increase of FA membrane concentration bring about the significant exponential Gm increase, implying the contribution of FA in proton leak. Quantitative analysis of the energy barrier for the transport of FA anions in the presence and absence of protein suggests that FA remain exposed to membrane lipids while crossing the UCP-containing membrane. We believe this study shows that UCPs and FA decrease ΔΨm more effectively if it is sufficiently high. Thus, the tight regulation of proton conductance and/or FA concentration by ΔΨm may be key in mitochondrial respiration and metabolism.  相似文献   

10.
While many studies have explored the growth of Pseudomonas aeruginosa, comparatively few have focused on its survival. Previously, we reported that endogenous phenazines support the anaerobic survival of P. aeruginosa, yet the physiological mechanism underpinning survival was unknown. Here, we demonstrate that phenazine redox cycling enables P. aeruginosa to oxidize glucose and pyruvate into acetate, which promotes survival by coupling acetate and ATP synthesis through the activity of acetate kinase. By measuring intracellular NAD(H) and ATP concentrations, we show that survival is correlated with ATP synthesis, which is tightly coupled to redox homeostasis during pyruvate fermentation but not during arginine fermentation. We also show that ATP hydrolysis is required to generate a proton‐motive force using the ATP synthase complex during fermentation. Together, our results suggest that phenazines enable maintenance of the proton‐motive force by promoting redox homeostasis and ATP synthesis. This work demonstrates the more general principle that extracellular redox‐active molecules, such as phenazines, can broaden the metabolic versatility of microorganisms by facilitating energy generation.  相似文献   

11.
Oxidation of ferrocytochrome c by molecular oxygen catalysed by cytochrome c oxidase (cytochrome aa3) is coupled to translocation of H+ ions across the mitochondrial membrane. The proton pump is an intrinsic property of the cytochrome c oxidase complex as revealed by studies with phospholipid vesicles inlayed with the purified enzyme. As the conformation of cytochrome aa3 is specifically sensitive to the electrochemical proton gradient across the mitochondrial membrane, it is likely that redox energy is primarily conserved as a conformational “strain” in the cytochrome aa3 complex, followed by relaxation linked to proton translocation. Similar principles of energy conservation and transduction may apply on other respiratory chain complexes and on mitochondrial ATP synthase.  相似文献   

12.
《BBA》2018,1859(10):1067-1074
In the present study, we studied the role of chloroplastic ATP synthase in photosynthetic regulation during leaf maturation. We measured gas exchange, chlorophyll fluorescence, P700 redox state, and the electrochromic shift signal in mature and immature leaves. Under high light, the immature leaves displayed high levels of non-photochemical quenching (NPQ) and P700 oxidation ratio, and higher values for proton motive force (pmf) and proton gradient (ΔpH) across the thylakoid membranes but lower values for the activity of chloroplastic ATP synthase (gH+) than the mature leaves. Furthermore, gH+ was significantly and positively correlated with CO2 assimilation rate and linear electron flow (LEF), but negatively correlated with pmf and ΔpH. ΔpH was significantly correlated with LEF and the P700 oxidation ratio. These results indicated that gH+ was regulated to match photosynthetic capacity during leaf maturation, and the formation of pmf and ΔpH was predominantly regulated by the alterations in gH+. In the immature leaves, the high steady-state ΔpH increased lumen acidification, which, in turn, stimulated photoprotection for the photosynthetic apparatus via NPQ induction and photosynthetic control. Our results highlighted the importance of chloroplastic ATP synthase in optimizing the trade-off between CO2 assimilation and photoprotection during leaf maturation.  相似文献   

13.
We developed a computational model of mitochondrial energetics that includes Ca2+, proton, Na+, and phosphate dynamics. The model accounts for distinct respiratory fluxes from substrates of complex I and complex II, pH effects on equilibrium constants and enzyme kinetics, and the acid-base equilibrium distributions of energy intermediaries. We experimentally determined NADH and ΔΨm in guinea pig mitochondria during transitions from de-energized to energized, or during state 2/4 to state 3 respiration, or into hypoxia and uncoupling, and compared the results with those obtained in model simulations. The model quantitatively reproduces the experimentally observed magnitude of ΔΨm, the range of NADH levels, respiratory fluxes, and respiratory control ratio upon transitions elicited by sequential additions of substrate and ADP. Simulation results are also able to mimic the change in ΔΨm upon addition of phosphate to state 4 mitochondria, leading to matrix acidification and ΔΨm polarization. The steady-state behavior of the integrated mitochondrial model qualitatively simulates the dependence of respiration on the proton motive force, and the expected flux-force relationships existing between respiratory and ATP synthesis fluxes versus redox and phosphorylation potentials. This upgraded mitochondrial model provides what we believe are new opportunities for simulating mitochondrial physiological behavior during dysfunctional states involving changes in pH and ion dynamics.  相似文献   

14.
15.
Bernhard Kadenbach 《BBA》2003,1604(2):77-94
This article reviews parameters of extrinsic uncoupling of oxidative phosphorylation (OxPhos) in mitochondria, based on induction of a proton leak across the inner membrane. The effects of classical uncouplers, fatty acids, uncoupling proteins (UCP1-UCP5) and thyroid hormones on the efficiency of OxPhos are described. Furthermore, the present knowledge on intrinsic uncoupling of cytochrome c oxidase (decrease of H+/e stoichiometry=slip) is reviewed. Among the three proton pumps of the respiratory chain of mitochondria and bacteria, only cytochrome c oxidase is known to exhibit a slip of proton pumping. Intrinsic uncoupling was shown after chemical modification, by site-directed mutagenesis of the bacterial enzyme, at high membrane potential ΔΨ, and in a tissue-specific manner to increase thermogenesis in heart and skeletal muscle by high ATP/ADP ratios, and in non-skeletal muscle tissues by palmitate. In addition, two mechanisms of respiratory control are described. The first occurs through the membrane potential ΔΨ and maintains high ΔΨ values (150-200 mV). The second occurs only in mitochondria, is suggested to keep ΔΨ at low levels (100-150 mV) through the potential dependence of the ATP synthase and the allosteric ATP inhibition of cytochrome c oxidase at high ATP/ADP ratios, and is reversibly switched on by cAMP-dependent phosphorylation. Finally, the regulation of ΔΨ and the production of reactive oxygen species (ROS) in mitochondria at high ΔΨ values (150-200 mV) are discussed.  相似文献   

16.
Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.  相似文献   

17.
Mitochondrial disorders are often associated with primary or secondary CoQ10 decrease. In clinical practice, Coenzyme Q10 (CoQ10) levels are measured to diagnose deficiencies and to direct and monitor supplemental therapy. CoQ10 is reduced by complex I or II and oxidized by complex III in the mitochondrial respiratory chain. Therefore, the ratio between the reduced (ubiquinol) and oxidized (ubiquinone) CoQ10 may provide clinically significant information in patients with mitochondrial electron transport chain (ETC) defects. Here, we exploit mutants of Caenorhabditis elegans (C. elegans) with defined defects of the ETC to demonstrate an altered redox ratio in Coenzyme Q9 (CoQ9), the native quinone in these organisms. The percentage of reduced CoQ9 is decreased in complex I (gas-1) and complex II (mev-1) deficient animals, consistent with the diminished activity of these complexes that normally reduce CoQ9. As anticipated, reduced CoQ9 is increased in the complex III deficient mutant (isp-1), since the oxidase activity of the complex is severely defective. These data provide proof of principle of our hypothesis that an altered redox status of CoQ may be present in respiratory complex deficiencies. The assessment of CoQ10 redox status in patients with mitochondrial disorders may be a simple and useful tool to uncover and monitor specific respiratory complex defects.  相似文献   

18.
Mitochondrial complex I couples electron transfer between matrix NADH and inner-membrane ubiquinone to the pumping of protons against a proton motive force. The accepted proton pumping stoichiometry was 4 protons per 2 electrons transferred (4H+/2e) but it has been suggested that stoichiometry may be 3H+/2e based on the identification of only 3 proton pumping units in the crystal structure and a revision of the previous experimental data. Measurement of proton pumping stoichiometry is challenging because, even in isolated mitochondria, it is difficult to measure the proton motive force while simultaneously measuring the redox potentials of the NADH/NAD+ and ubiquinol/ubiquinone pools. Here we employ a new method to quantify the proton motive force in living cells from the redox poise of the bc1 complex measured using multiwavelength cell spectroscopy and show that the correct stoichiometry for complex I is 4H+/2e in mouse and human cells at high and physiological proton motive force.  相似文献   

19.
Two mechanisms may affect the yield of the oxidative phosphorylation pathway in isolated mitochondria: (i) a decrease in the intrinsic coupling of the proton pumps (H+/2e- or H+/ATP), and (ii) an increase in the inner membrane conductance (proton or cation leak). Hence three kinds of modifications can occur and each of them have been characterized in isolated rat liver mitochondria (see preceding chapter by Rigoulet et al.). In intact isolated hepatocytes, these modifications are linked to specific patterns of bioenergetic parameters, i.e. respiratory flux, mitochondrial redox potential, DY, and phosphate potential.(1) The increase in H+/ATP stoichiometry of the mitochondrial ATP synthase, as induced by almitrine [20], leads to a decrease in mitochondrial and cytosolic ATP/ADP ratios without any change in the protonmotive force nor in the respiratory rate or redox potential. (2) In comparison to carbohydrate, octanoate metabolism by -oxidation increases the proportion of electrons supplied at the second coupling site of the respiratory chain. This mimics a redox slipping. Octanoate addition results in an increased respiratory rate and mitochondrial NADH/NAD ratio while protonmotive force and phosphate potential are almost unaffected. The respiratory rate increase is associated with a decrease in the overall apparent thermodynamic driving force (2'o - np) which confirms the redox-slipping-like effect. (3) An increase in proton conductance as induced by the protonophoric uncoupler 2,4-dinitrophenol (DNP) leads to a decrease, as expected, in the mitochondrial NADH/NAD and ATP/ADP ratios and in while respiratory rate is increased.Thus, each kind of modification (proton leak, respiratory chain redox slipping or increase in H+/ATP stoichiometry of ATPase) is related to a specific set of bioenergetic parameters in intact cells. Moreover, these patterns are in good agreement with the data found in isolated mitochondria.From this work, we conclude that quantitative analysis of four bioenergetic parameters (respiration rate, mitochondrial NADH/NAD ratio, protonmotive force and mitochondrial phosphate potential) gives adequate tools to investigate the mechanism by which some alterations may affect the yield of the oxidative phosphorylation pathway in intact cells.  相似文献   

20.
Alexander Wiedenmann 《BBA》2008,1777(10):1301-1310
The membrane-embedded F0 part of ATP synthases is responsible for ion translocation during ATP synthesis and hydrolysis. Here, we describe an in vitro system for measuring proton fluxes through F0 complexes by fluorescence changes of the entrapped fluorophore pyranine. Starting from purified enzyme, the F0 part was incorporated unidirectionally into phospholipid vesicles. This allowed analysis of proton transport in either synthesis or hydrolysis direction with Δψ or ΔpH as driving forces. The system displayed a high signal-to-noise ratio and can be accurately quantified. In contrast to ATP synthesis in the Escherichia coli F1F0 holoenzyme, no significant difference was observed in the efficiency of ΔpH or Δψ as driving forces for H+-transport through F0. Transport rates showed linear dependency on the driving force. Proton transport in hydrolysis direction was about 2400 H+/(s × F0) at Δψ of 120 mV, which is approximately twice as fast as in synthesis direction. The chloroplast enzyme was faster and catalyzed H+-transport at initial rates of 6300 H+/(s × F0) under similar conditions. The new method is an ideal tool for detailed kinetic investigations of the ion transport mechanism of ATP synthases from various organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号