首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a way to quantify the diffusion process of molecular compounds through biological membranes, we investigated in this study the dynamics of DMSO through an 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) bilayer system. To properly account for the diffusion of DMSO due to a concentration gradient, a double DPPC bilayer was setup for our simulations. In such configuration, the aqueous phases can be explicitly associated with the extra and intracellular domains of the membrane, which is seldom the case in studies of single lipid bilayer due to the periodicity imposed by the simulations. DMSO molecules were initially contained in one of the aqueous phases (extracellular region) at a concentration of 5 wt.%. Molecular dynamics simulation was performed in this system for 95 ns at 350 K and 1 bar. The simulations showed that although many DMSO molecules penetrated the lipid bilayer, only about 10% of them crossed the bilayer to reach the other aqueous phase corresponding to the intracellular region of the membrane. The simulation time considered was insufficient to reach equilibrium of the DMSO concentration between the aqueous phases. However, the simulations provided sufficient information to estimate parameters to apply Fick's Law to model the diffusion process of the system. Using this model, we predicted that for the time considered in our simulation, the concentration of DMSO in the intracellular domain should have been about half of the actual value obtained. The model also predicted that equilibrium of the DMSO concentration in the system would be reached after about 2000 ns, approximately 20 times longer than the performed simulation.  相似文献   

2.
Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results indicate that the effect of simvastatin on membrane structure and dynamics depends on the type of membrane lipids. In anionic DPPG MLVs, high simvastatin concentrations (12, 18, 24 mol%) change the position of the CH2 antisymmetric stretching mode to lower wavenumber values, implying an ordering effect. However, in zwitterionic DPPC MLVs, high concentrations of simvastatin disorder systems both in the gel and liquid crystalline phases. Moreover, in DPPG and DPPC MLVs, simvastatin has opposite dual effects on membrane dynamics. The bandwidth of the CH2 antisymmetric stretching modes increases in DPPG MLVs, implying an increase in the dynamics, whereas it decreases in DPPC MLVs. Simvastatin caused broadening of the phase transition peaks and formation of shoulders on the phase transition peaks in DSC curves, indicating multi-domain formations in the phospholipid membranes. Because physical features of membranes such as lipid order and fluidity may be changed with the bioactivity of drugs, opposing effects of simvastatin on the order and dynamics of neutral and charged phospholipids may be critical to deduce the action mechanism of the drug and estimate drug-membrane interactions.  相似文献   

3.
Several lines of evidence suggest that nonspecific drug interaction with the lipid bilayer plays an important role in subsequent recognition and binding to specific receptor sites in the membrane. The interaction of Bay K 8644, a 1,4-dihydropyridine (DHP) calcium channel agonist, with model and biological membranes was examined at the molecular level using small angle x-ray diffraction. Nonspecific drug partitioning into the membrane was examined by radiochemical assay. Nonspecific binding characteristics of [3H] Bay K 8644 were determined in both dipalmitoyl phosphatidylcholine (DPPC) vesicles above and below their thermal phase transition (Tm) and rabbit skeletal muscle light sarcoplasmic reticulum (LSR). In DPPC, the partition coefficient, Kp, was 14,000 above the Tm (55 degrees C) versus 160 in the gel phase (2 degrees C). The Kp determined in LSR membranes was 10,700. These values for both DPPC and LSR membranes can be compared with Kp = 290 in the traditional octanol/buffer system. Using small-angle x-ray diffraction, the equilibrium position of the electron-dense trifluoromethyl group of Bay K 8644 in DPPC (above Tm) and purified cardiac sarcolemmal (CSL) lipid bilayers was determined to be consistently located within the region of the first few methylene segments of the fatty acyl chains of these membranes. This position is similar to that observed for the DHP calcium channel antagonists nimodipine and Bay P 8857. We suggest this particular membrane location defines a region of local drug concentration and plane for lateral diffusion to a common receptor site. Below the DPPC membrane Tm, Bay K 8644 was shown to be excluded from this energetically favored position into the interbilayer water space. Heating the DPPC bilayer above the Tm (55 degrees C) showed that this exclusion was reversible and indicates that drug-membrane interaction is dependent on the bilayer physical state. The absence of any specific protein binding sites in these systems allows us to ascertain the potentially important role that the bulk lipid phase may play in the molecular mechanism of DHP binding to the specific receptor site associated with the calcium channel.  相似文献   

4.
As a way to quantify the diffusion process of molecular compounds through biological membranes, we investigated in this study the dynamics of DMSO through an 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) bilayer system. To properly account for the diffusion of DMSO due to a concentration gradient, a double DPPC bilayer was setup for our simulations. In such configuration, the aqueous phases can be explicitly associated with the extra and intracellular domains of the membrane, which is seldom the case in studies of single lipid bilayer due to the periodicity imposed by the simulations. DMSO molecules were initially contained in one of the aqueous phases (extracellular region) at a concentration of 5 wt.%. Molecular dynamics simulation was performed in this system for 95 ns at 350 K and 1 bar. The simulations showed that although many DMSO molecules penetrated the lipid bilayer, only about 10% of them crossed the bilayer to reach the other aqueous phase corresponding to the intracellular region of the membrane. The simulation time considered was insufficient to reach equilibrium of the DMSO concentration between the aqueous phases. However, the simulations provided sufficient information to estimate parameters to apply Fick's Law to model the diffusion process of the system. Using this model, we predicted that for the time considered in our simulation, the concentration of DMSO in the intracellular domain should have been about half of the actual value obtained. The model also predicted that equilibrium of the DMSO concentration in the system would be reached after about 2000 ns, approximately 20 times longer than the performed simulation.  相似文献   

5.
Drug release and its relationship with kinetic and thermodynamic parameters of drug sorption onto starch acetate (SA) fibers have been studied using Diclofenac, 5‐Fluorouracil (5‐Fu), and Metformin as model drugs. The sorption method is more flexible and can avoid limitations or problems which occur with molten or dissolution methods. To understand drug release of sorption loading, kinetic and apparent thermodynamic parameters, such as diffusion coefficient, activation energy for diffusion, affinity, and sorption enthalpy and entropy, have been investigated. The quantitative relationship between drug release and drug‐loading concentration, affinity, and activation energy for diffusion has been established to predict the initial burst and subsequent release of the drugs. Up to 12% of Diclofenac, based on the weight of SA, can be loaded onto fibers using the sorption method. Drugs with higher activation energy for diffusion, lower diffusion coefficients, and higher affinity for SA fiber, such as Diclofenac, are more suitable for sorption loading. It has also been found that elevated temperatures will achieve higher loading capacity and a more constant release rate. Biotechnol. Bioeng. 2010. 105: 814–822. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.  相似文献   

7.
The effects of two insecticides isomers, α- and β-endosulfan, on the passive proton permeability of large unilamellar vesicles (LUV) reconstituted with dipalmitoylphosphatidylcholine (DPPC) or mitochondrial lipids were reported. In DPPC (LUV) gel phase, at 30 °C, the global kinetic constant (K) of proton permeability (proportional to the proton permeability) initially increased slightly with the increase of α-endosulfan/lipid molar ratio up to 0.143. In the range from 0.143 to 0.286, a discontinuity in the increment occurred and, above this range, the proton permeability increased substantially. In DPPC fluid phase, at 48 °C, the proton permeability showed a behavior identical to that observed in gel DPPC, with a sharp increase for α-endosulfan/lipid molar ratios ranging from 0.143 to 0.286. At these and higher concentrations, α-endosulfan induced phase separation in the plane of DPPC membranes, as revealed by differential scanning calorimetry (DSC). Conversely to α-endosulfan, β-endosulfan induced only a slight increase in the proton permeability, either in the fluid or the gel phase of DPPC, for all β-endosulfan/lipid molar ratios tested. Additionally, the effects of the endosulfan isomers on the proton permeability of mitochondrial fluid lipid dispersions, at 37 °C, are similar to those described for DPPC. The β-isomer induced a very small effect, and α-endosulfan, at low concentrations, increased slightly the proton permeability, but for insecticide/lipid molar ratios above 0.143 the permeability increased substantially. Consequently, the membrane physical state of synthetic and native lipid dispersions, as affected by the structural features of α- and β-endosulfan, influenced the proton permeability. The effects here observed in vitro suggest that the formation of lateral membrane domains may underlay the biological activity of α-endosulfan in vivo, contributing to its higher degree of toxicity as compared with β-endosulfan.  相似文献   

8.
Direct deposition of a noble metal layer onto a solid-supported membrane was proposed as an indirect microscopy tool to visually observe different lipid phases that may develop in the lipid membrane. The method relied on the different permeability of the lipid membrane towards the incident atoms during deposition. Liquid state or structural defects such as phase boundaries, step ledges in a multi-lamellar stack, and pores permitted the metal atoms to penetrate and nucleate inside the membrane whereas rigid gel state was relatively impermeable to the incident atoms, thus enabling visualization of liquid phase or structural defects inside the gel state. Based on the proposed method, we demonstrated the phase states resulting from thermotropic transitions of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dioleoylphosphatidylethanolamine (DOPE)/DPPC mixture, and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP). Although the proposed method does not allow in-situ observation of equilibrium states, the method should be an excellent complementary tool for visualizing the lipid phases as the method can resolve fine structural details (up to tens of nanometer scale) as seen in the DPPC membrane while providing macroscopic images (up to several micrometers).  相似文献   

9.
DSC and (1H and 31P) NMR measurements are used to investigate the perturbation caused by the keratolytic drug, salicylic acid (SA) on the physicochemical properties of the model membranes. Model membranes (in unilamellar vesicular (ULV) form) in the present studies are prepared with the phospholipids, dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), dipalmitoyl phosphatidic acid (DPPA) and mixed lipid DPPC-DPPE (with weight ratio, 2.5:2.2). These lipids have the same acyl (dipalmitoyl) chains but differed in the headgroup. The molar ratio of the drug to lipid (lipid mixture), is in the range 0 to 0.4. The DSC and NMR results suggest that the lipid head groups have a pivotal role in controlling (i) the behavior of the membranes and (ii) their interactions with SA. In the presence of SA, the main phase transition temperature of (a) DPPE membrane decreases, (b) DPPA membrane increases and (c) DPPC and DPPC-DPPE membranes are not significantly changed. The drug increases the transition enthalpy (i.e., acyl chain order) in DPPC, DPPA and DPPC-DPPE membranes. However, the presence of the drug in DPPC membrane formed using water (instead of buffer), shows a decrease in the transition temperature and enthalpy. In all the systems studied, the drug molecules seem to be located in the interfacial region neighboring the glycerol backbone or polar headgroup. However, in DPPC-water system, the drug seems to penetrate the acyl chain region also.  相似文献   

10.
Lipid structure critically dictates the molecular interactions of drugs with membranes influencing passive diffusion, drug partitioning and accumulation, thereby underpinning a lipid-composition specific interplay. Spurring selective passive drug diffusion and uptake through membranes is an obvious solution to combat growing antibiotic resistance with minimized toxicities. However, the spectrum of complex mycobacterial lipids and lack thereof of suitable membrane platforms limits the understanding of mechanisms underlying drug-membrane interactions in tuberculosis. Herein, we developed membrane scaffolds specific to mycobacterial outer membrane and demonstrate them as improvised research platforms for investigating anti-tubercular drug interactions. Combined spectroscopy and microscopy results reveal an enhanced partitioning of model drug Rifabutin in trehalose dimycolate-containing mycobacterial membrane systems. These effects are apportioned to specific changes in membrane structure, order and fluidity leading to enhanced drug interaction. These findings on the membrane biophysical consequences of drug interactions will offer valuable insights for guiding the design of more effective antibiotic drugs coupled with tuned toxicity profiles.  相似文献   

11.
The applicability of a new steroidal spin label, 3-oxo-androstan-17 beta-yl-(2",2",6",6"-tetramethyl-N-oxyl) piperidyl butan-1',4'-dioate, in studying the phase transition properties of model membrane L-alpha-dipalmitoyl phosphatidyl choline (DPPC) in the presence and absence of drugs has been explored. Its synthesis and characterization has been described herein. Besides, the localization of this spin label in lipid liposomes has been studied using electron spin resonance (ESR), differential scanning calorimetry (DSC) and 1H and 31P NMR spectroscopic techniques. The label has also been used to study the permeability of epinephrine into membrane. The results show that the spin label has a good potential as a spin probe in the study of biomembranes.  相似文献   

12.
Valsartan is a marketed drug with high affinity to the type 1 angiotensin (AT1) receptor. It has been reported that AT1 antagonists may reach the receptor site by diffusion through the plasma membrane. For this reason we have applied a combination of differential scanning calorimetry (DSC), Raman spectroscopy and small and wide angle X-ray scattering (SAXS and WAXS) to investigate the interactions of valsartan with the model membrane of dipalmitoyl-phosphatidylcholine (DPPC). Hence, the thermal, dynamic and structural effects in bulk as well as local dynamic properties in the bilayers were studied with different valsartan concentrations ranging from 0 to 20 mol%. The DSC experimental results showed that valsartan causes a lowering and broadening of the phase transition. A splitting of the main transition is observed at high drug concentrations. In addition, valsartan causes an increase in enthalpy change of the main transition, which can be related to the induction of interdigitation of the lipid bilayers in the gel phase. Raman spectroscopy revealed distinct interactions between valsartan with the lipid interface localizing it in the polar head group region and in the upper part of the hydrophobic core. This localization of the drug molecule in the lipid bilayers supports the interdigitation view. SAXS measurements confirm a monotonous bilayer thinning in the fluid phase, associated with a steady increase of the root mean square fluctuation of the bilayers as the valsartan concentration is increased. At high drug concentrations these fluctuations are mainly governed by the electrostatic repulsion of neighboring membranes. Finally, valsartans' complex thermal and structural effects on DPPC bilayers are illustrated and discussed on a molecular level.  相似文献   

13.
Many pharmacologically active compounds are of amphiphilic (or hydrophobic) nature. As a result, they tend to self-associate and to interact with biological membranes. This review focuses on the self-aggregation properties of drugs, as well as on their interaction with membranes. It is seen that drug-membrane interactions are analogous to the interactions between membranes and classical detergents. Phenomena such as shape changes, vesiculation, membrane disruption, and solubilization have been observed. At the molecular level, these events seem to be modulated by lipid flip-flop and formation of non-bilayer phases. The modulation of physicochemical properties of drugs by self-association and membrane binding is discussed. Pathological consequences of drug-membrane interaction are described. The mechanisms of drug solubilization by surfactants are reviewed from the physicochemical point of view and in relation to drug carrying and absorption by the organism.  相似文献   

14.
The interactions of three neuroleptic drugs, clozapine (CLZ), chlorpromazine (CPZ), and haloperidol (HPD) with phospholipids were compared using DSC and Langmuir balance. Main emphasis was on the drug-induced effects on the lateral organization of lipid mixtures of the saturated zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and the unsaturated acidic phosphatidylserine, brainPS. In multilamellar vesicles (MLV) phase separation was observed by DSC at X(PS)> or =0.05. All three drugs bound to these MLVs, abolishing the pretransition at X(drug)> or =0.03. The main transition temperature (T(m)) decreased almost linearly with increasing contents of the drugs, CLZ having the smallest effect. In distinction from the other two drugs, CLZ abolished the phase separation evident in the endotherms for DPPC/brainPS (X(PS)=0.05) MLVs. Compression isotherms of DPPC/brainPS/drug (X(PS)=X(drug)=0.05) monolayers revealed the neuroleptics to increase the average area/molecule, CLZ being the most effective. Penetration into brainPS monolayers showed strong interactions between the three drugs and this acidic phospholipid (in decreasing order CPZ>HPD>CLZ). Hydrophobic interactions demonstrated using neutral eggPC monolayers decreased in a different order, CLZ>CPZ>HPD. Fluorescence microscopy revealed domain morphology of DPPC/brainPS monolayers to be modulated by these drugs, increasing the gel-fluid domain boundary length in the phase coexistence region. To conclude, our data support the view that membrane-partitioning drugs could exert part of their effects by changing the lateral organization and thus also the functions of biomembranes.  相似文献   

15.
《Process Biochemistry》2007,42(1):16-24
The kinetics and mechanism of the sorptive removal of methylene blue dye from aqueous solution using palm kernel fibre as adsorbent have been investigated. Batch kinetic experiments were performed and system variables investigated includes pH and initial dye concentration. The kinetic data were fitted to the pseudo-first, pseudo-second, intraparticle diffusion and mass transfer models. The pseudo-first order reaction kinetics fitted to the experimental data only in the first 5 min of sorption and then deviated, while the pseudo-second order kinetic model was found to fit the experimental data for the entire sorption period with high coefficient of determination. Equations were developed using the pseudo-second order model, which predicts the amounts of methylene blue at any contact time and initial concentration within the given range. This suggests that the sorption of methylene blue onto palm kernel fibre follows a chemical activation mechanism. A mathematical relationship was also drawn between the equilibrium sorption capacity and the change in pH (ΔH+) at the end of the kinetic experiments with varying initial dye concentration, supporting the fact that chemical reaction (ion exchange) occurred and is important in the rate determining step. Mass transfer was found to be favoured at high concentrations while intraparticle diffusion was favoured at low concentrations.  相似文献   

16.
Liposomes can be used as carriers of drugs in the treatment of viral, bacterial and protozoal infections. The potential for liposome-mediated therapy of Mycobacterium avium-intracellulare complex infections, one of the most common opportunistic infections in AIDS, is currently under study. Here, we have investigated the effect of the lipid-soluble antimycobacterial drugs ansamycin, clofazimine and CGP7040 on the thermotropic behavior of liposomes composed of dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) using differential scanning calorimetry (DSC). In the presence of ansamycin (rifabutine), the peak gel-liquid crystalline phase transition temperature (Tm) of DPPG was reduced, as was the sub-transition temperature (Ts), whereas the Tm of DPPC was reduced only slightly. The temperature of the pre-transition (Tp) of DPPC was lowered, while the pre-transition of DPPG was abolished. Ansamycin also caused the broadening of the transition endotherm of both lipids. Equilibration of the drug/lipid complex for 1 or 5 days produced different thermotropic behavior. In the presence of clofazimine, the cooperativity of the phase transition of DPPG decreased. Above 10 mol% clofazimine formed two complexes with DPPG, as indicated by two distinguishable peaks in DSC thermograms. The Tm of both peaks were lowered as the mole fraction increased. Clofazimine had minimal interaction with DPPC. In contrast, CGP7040 interacted more effectively with DPPC than with DPPG, causing a reduction of the size of the cooperative unit of DPPC even at 2 mol%. The main transition of DPPC split into 3 peaks at 5 mol% drug. The pre-transition was abolished at all drug concentrations and the sub-transition disappeared at 10 mol% CGP7040. These studies suggest that maximal encapsulation of clofazimine in liposomes would require a highly negatively charged membrane, while that of CGP7040 would necessitate a zwitterionic membrane. We have also investigated the interaction of the water-soluble antibiotic pentamidine, which has been used against Pneumocystis carinii, the most lethal of AIDS-related opportunistic pathogens. Aerosol administration of this drug leads to long-term sequestration of the drug in the lungs. The DPPG/pentamidine complex exhibited a pre-transition at 3.5 degrees C, an endothermic peak at 42 degrees C, and an exothermic peak at 44.5 degrees C, followed by another endothermic peak at 55 degrees C. The exotherm depended on the history of the sample, requiring pre-incubation for several minutes below the 42 degrees C transition. These observations suggest that upon melting of the DPPG chains at 42 degrees C, the DPPG crystallizes as a DPPG/pentamidine complex that melts at 55 degrees C.  相似文献   

17.
We performed molecular dynamics simulations on dipalmitoylphosphatidylcholine (DPPC)/dimethylsulfoxide (DMSO) system that has the same lipid:solvent weight ratio as in our previous simulation done on DPPC/water. We did not observe a large change in the size of DPPC membrane when the solvent was changed from water to DMSO. Also, we did not observe that a large number of DMSO molecules is permeating into the membrane, as it was suggested to explain the observed change in the bilayer repeat period. We found that the surface potential reverses its sign when water is replaced by DMSO. Based on the results from our simulations, we propose that the repulsion force acting between membranes is reduced when DMSO is added to solvent water and therefore membrane surfaces approach closer to each other and the extra solvent is removed into excess solution.  相似文献   

18.
BackgroundThe use of functionalized iron oxide nanoparticles of various chemical properties and architectures offers a new promising direction in theranostic applications. The increasing applications of nanoparticles in medicine require that these engineered nanomaterials will contact human cells without damaging essential tissues. Thus, efficient delivery must be achieved, while minimizing cytotoxicity during passage through cell membranes to reach intracellular target compartments.MethodsDifferential Scanning Calorimetry (DSC), molecular modeling, and atomistic Molecular Dynamics (MD) simulations were performed for two magnetite nanoparticles coated with polyvinyl alcohol (PVA) and polyarabic acid (ARA) in order to assess their interactions with model DPPC membranes.ResultsDSC experiments showed that both nanoparticles interact strongly with DPPC lipid head groups, albeit to a different degree, which was further confirmed and quantified by MD simulations. The two systems were simulated, and dynamical and structural properties were monitored. A bimodal diffusion was observed for both nanoparticles, representing the diffusion in the water phase and in the proximity of the lipid bilayer. Nanoparticles did not enter the bilayer, but caused ordering of the head groups and reduced the area per lipid compared to the pure bilayer, with MAG-PVA interacting more strongly and being closer to the lipid bilayer.ConclusionsResults of DSC experiments and MD simulations were in excellent agreement. Our findings demonstrate that the external coating is a key factor that affects nanoparticle-membrane interactions. Magnetite nanoparticles coated with PVA and ARA did not destabilize the model membrane and can be considered promising platforms for biomedical applications.General significanceUnderstanding the physico-chemical interactions of different nanoparticle coatings in contact with model cell membranes is the first step for assessing toxic response and could lead to predictive models for estimating toxicity. DSC in combination with MD simulations is an effective strategy to assess physico-chemical interactions of coated nanoparticles with lipid bilayers.  相似文献   

19.
In this paper we have investigated via x-ray diffraction the influence of dimethyl sulfoxide (DMSO), known for its biological and therapeutic properties, on the structure of lipid membranes of dipalmitoylphosphatidylcholine (DPPC) in excess of the solvent (DMSO/water) at mole DMSO fractions XDMSO in (0.1) and under equilibrium conditions. At small XDMSO </= 0.133 the repeat distance d is reduced remarkably, whereas wide-angle x-ray diffraction pattern remains almost unchanged with the increase in XDMSO. It agrees well with previous study (Yu and Quinn, 1995). At 0.133 < XDMSO < 0.3 the repeat period d reduces slowly; however, an orthorombic in-plane lattice of hydrocarbon chains transfers to a disordered quasihexagonal lattice. The increase in XDMSO from 0.3 up to approximately 0.9 leaves d almost unchanged, whereas it leads to less disordered packing of hydrocarbon chains. At XDMSO approximately 0.9, Lbeta' phase transfers into interdigitated phase. The chain-melting phase transition temperature of DPPC membranes increases by several degrees with the increase of DMSO concentration. It points to a strong concentration-dependent solvation of membrane surface by DMSO. Thus DMSO strongly interacts with the membrane surface, probably displacing water and modifying the structure of the lipid bilayer. It appears to determine some of the properties of DMSO as a biologically and therapeutically active substance.  相似文献   

20.
Azithromycin is a macrolide antibiotic known to bind to lipids and to affect endocytosis probably by interacting with lipid membranes [Tyteca, D., Schanck, A., Dufrene, Y.F., Deleu, M., Courtoy, P.J., Tulkens, P.M., Mingeot-Leclercq, M.P., 2003. The macrolide antibiotic azithromycin interacts with lipids and affects membrane organization and fluidity: studies on Langmuir-Blodgett monolayers, liposomes and J774 macrophages. J. Membr. Biol. 192, 203-215]. In this work, we investigate the effect of azithromycin on lipid model membranes made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Thermal transitions of both lipids in contact with azithromycin are studied by (31)P NMR and DSC on multilamellar vesicles. Concerning the DPPC, azithromycin induces a suppression of the pretransition whereas a phase separation between the DOPC and the antibiotic is observed. For both lipids, the enthalpy associated with the phase transition is strongly decreased with azithromycin. Such effects may be due to an increase of the available space between hydrophobic chains after insertion of azithromycin in lipids. The findings provide a molecular insight of the phase merging of DPPC gel in DOPC fluid matrix induced by azithromycin [Berquand, A., Mingeot-Leclercq, M.P., Dufrene, Y.F., 2004. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim. Biophys. Acta 1664, 198-205] and could help to a better understanding of azithromycin-cell interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号