首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pontin and reptin belong to the AAA+ family, and they are essential for the structural integrity and catalytic activity of several chromatin remodeling complexes. They are also indispensable for the assembly of several ribonucleoprotein complexes, including telomerase. Here, we propose a structural model of the yeast pontin/reptin complex based on a cryo-electron microscopy reconstruction at 13 A. Pontin/reptin hetero-dodecamers were purified from in vivo assembled complexes forming a double ring. Two rings interact through flexible domains projecting from each hexamer, constituting an atypical asymmetric form of oligomerization. These flexible domains and the AAA+ cores reveal significant conformational changes when compared with the crystal structure of human pontin that generate enlarged channels. This structure of endogenously assembled pontin/reptin complexes is different than previously described structures, suggesting that pontin and reptin could acquire distinct structural states to regulate their broad functions as molecular motors and scaffolds for nucleic acids and proteins.  相似文献   

3.
Dyskerin binds the H/ACA box of human telomerase RNA and is a core telomerase subunit required for RNP biogenesis and enzyme function in vivo. Missense mutations in dyskerin result in dyskeratosis congenita, a complex syndrome characterized by bone marrow failure, telomerase enzyme deficiency, and progressive telomere shortening. Here we demonstrate that dyskerin also contributes to telomere maintenance in Arabidopsis thaliana. We report that both AtNAP57, the Arabidopsis dyskerin homolog, and AtTERT, the telomerase catalytic subunit, accumulate in the plant nucleolus, and AtNAP57 associates with active telomerase RNP particles in an RNA-dependent manner. Furthermore, AtNAP57 interacts in vitro with AtPOT1a, a novel component of Arabidopsis telomerase. Although a null mutation in AtNAP57 is lethal, AtNAP57, like AtTERT, is not haploinsufficient for telomere maintenance in Arabidopsis. However, introduction of an AtNAP57 allele containing a T66A mutation decreased telomerase activity in vitro, disrupted telomere length regulation on individual chromosome ends in vivo, and established a new, shorter telomere length set point. These results imply that T66A NAP57 behaves as a dominant-negative inhibitor of telomerase. We conclude that dyskerin is a conserved component of the telomerase RNP complex in higher eukaryotes that is required for maximal enzyme activity in vivo.  相似文献   

4.
5.
Baek SH 《Developmental cell》2008,14(4):459-461
Pontin and reptin are conserved AAA+ ATPases identified in chromatin-remodeling complexes. In a recent issue of Cell, Venteicher et al. provide new insight into the function of pontin and reptin in telomerase biogenesis, which is important for cellular senescence, aging, and cancer. These unexpected findings have implications for new avenues for development of effective therapeutic drugs in human disease.  相似文献   

6.
7.
8.
The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT. While loss of AtPOT1a does not impact AtTR stability, the templating domain is more accessible in pot1a mutants, supporting the conclusion that AtPOT1a stimulates telomerase activity but does not facilitate telomerase RNP assembly. We also show, that despite the absence of a canonical H/ACA binding motif within AtTR, dyskerin binds AtTR with high affinity and specificity in vitro via a plant specific three-way junction (TWJ). A core element of the TWJ is the P1a stem, which unites the 5′ and 3′ ends of AtTR. P1a is required for dyskerin-mediated stimulation of telomerase repeat addition processivity in vitro, and for AtTR accumulation and telomerase activity in vivo. The deployment of vertebrate-like accessory proteins and unique RNA structural elements by Arabidopsis telomerase provides a new platform for exploring telomerase biogenesis and evolution.  相似文献   

9.
10.
11.
12.
The human telomerase ribonucleoprotein particle (RNP) shares with box H/ACA small Cajal body (sca)RNPs and small nucleolar (sno)RNPs the proteins dyskerin, hGar1, hNhp2, and hNop10. How dyskerin, hGar1, hNhp2, and hNop10 assemble with box H/ACA scaRNAs, snoRNAs, and the RNA component of telomerase (hTR) in vivo remains unknown. In yeast, Naf1p interacts with H/ACA snoRNP proteins and may promote assembly of Cbf5p (the yeast ortholog of dyskerin) with nascent pre-snoRNAs. Here we show that the human HsQ96HR8 protein, thereafter termed hNaf1, can functionally replace endogenous Naf1p in yeast. HeLa hNaf1 associates with dyskerin and hNop10 as well as box H/ACA scaRNAs, snoRNAs, and hTR. Reduction of hNaf1 steady-state levels by RNAi significantly lowers accumulation of these components of box H/ACA scaRNP, snoRNP, and telomerase. hNaf1 is found predominantly in numerous discrete foci in the nucleoplasm and fails to accumulate within Cajal bodies or nucleoli. Altogether, these results suggest that hNaf1 intervenes in early assembly steps of human box H/ACA RNPs, including telomerase.  相似文献   

13.
14.
15.
16.
陈皓  黄君健  张惟材 《生物技术通讯》2007,18(4):674-676,693
近年来,端粒作为真核细胞染色体末端的保护染色体免受核酸酶降解的特殊的DNA重复结构,成为现代生物学的研究热点。端粒与基因表达调控、细胞生长、肿瘤发生、衰老有着密切的关系。端粒维持过程中有2类重要的蛋白,即端粒相关蛋白和端粒酶。端粒酶,特别是其催化亚基hTERT,在端粒延长过程中起着不可替代的作用,与细胞永生化和癌变密切相关。近年来,靶向端粒酶的肿瘤治疗在逆转录酶抑制剂尤其是反义核酸和免疫治疗方面都取得了突破性的进展。肿瘤干细胞在肿瘤的发生发展过程中起重要作用,将很有希望成为未来靶向端粒酶的肿瘤治疗的一个重要靶标。  相似文献   

17.
Dyskeratosis congenita is an inherited disease caused by mutations in genes coding for telomeric components. It was previously reported that expression of a dyskerin-derived peptide, GSE24.2, increases telomerase activity, regulates gene expression and decreases DNA damage and oxidative stress in dyskeratosis congenita patient cells. The biological activity of short peptides derived from GSE24.2 was tested and one of them, GSE4, that probed to be active, was further characterized in this article. Expression of this eleven amino acids long peptide increased telomerase activity and reduced DNA damage, oxidative stress and cell senescence in dyskerin-mutated cells. GSE4 expression also activated c-myc and TERT promoters and increase of c-myc, TERT and TERC expression. The level of biological activity of GSE4 was similar to that obtained by GSE24.2 expression. Incorporation of a dyskerin nuclear localization signal to GSE24.2 did not change its activity on promoter regulation and DNA damage protection. However, incorporation of a signal that increases the rate of nucleolar localization impaired GSE24.2 activity. Incorporation of the dyskerin nuclear localization signal to GSE4 did not alter its biological activity. Mutation of the Aspartic Acid residue that is conserved in the pseudouridine synthase domain present in GSE4 did not impair its activity, except for the repression of c-myc promoter activity and the decrease of c-myc, TERT and TERC gene expression in dyskerin-mutated cells. These results indicated that GSE4 could be of great therapeutic interest for treatment of dyskeratosis congenita patients.  相似文献   

18.
19.
Template definition by Tetrahymena telomerase reverse transcriptase   总被引:4,自引:0,他引:4       下载免费PDF全文
Miller MC  Liu JK  Collins K 《The EMBO journal》2000,19(16):4412-4422
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号