首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme regulating the synthesis of prostaglandin E2 (PGE2) in inflammatory conditions. In this study we investigated the regulation of mPGES-1 in gingival fibroblasts stimulated with the inflammatory mediators interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNFalpha). The results showed that IL-1beta and TNFalpha induce the expression of mPGES-1 without inducing the expression of early growth response factor-1 (Egr-1). Treatment of the cells with the PLA2 inhibitor 4-bromophenacyl bromide (BPB) decreased the cytokine-induced mPGES-1 expression accompanied by decreased PGE2 production whereas the addition of arachidonic acid (AA) upregulated mPGES-1 expression and PGE2 production. The protein kinase C (PKC) activator PMA did not upregulate the expression of mPGES-1 in contrast to COX-2 expression and PGE2 production. In addition, inhibitors of PKC, tyrosine and p38 MAP kinase markedly decreased the cytokine-induced PGE2 production but not mPGES-1 expression. Moreover, the prostaglandin metabolites PGE2 and PGF2alpha induced mPGES-1 expression as well as upregulated the cytokine-induced mPGES-1 expression indicating positive feedback regulation of mPGES-1 by prostaglandin metabolites. The peroxisome proliferator-activated receptor-gamma (PPARgamma) ligand, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), decreased mPGES-1 expression but not COX-2 expression or PGE2 production. The results indicate that the inflammatory-induced mPGES-1 expression is regulated by PLA2 and 15d-PGJ2 but not by PKC, tyrosine kinase or p38 MAP kinase providing new insights into the regulation of mPGES-1.  相似文献   

2.
3.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

4.
5.
The p38 mitogen-activated protein kinase (p38) pathway is required for the production of proinflammatory cytokines (TNFalpha and IL-1) that mediate the chronic inflammatory phases of several autoimmune diseases. Potent p38 inhibitors, such as the slow tight-binding inhibitor BIRB 796, have recently been reported to block the production of TNFalpha and IL-1beta. Here we analyze downstream signaling complexes and molecular mechanisms, to provide new insight into the function of p38 signaling complexes and the development of novel inhibitors of the p38 pathway. Catalysis, signaling functions, and molecular interactions involving p38alpha and one of its downstream signaling partners, mitogen-activated protein kinase-activated protein kinase 2 (MK2), have been explored by steady-state kinetics, surface plasmon resonance, isothermal calorimetry, and stopped-flow fluorescence. Functional 1/1 signaling complexes (Kd = 1-100 nM) composed of activated and nonactivated forms of p38alpha and a splice variant of MK2 (MK2a) were characterized. Catalysis of MK2a phosphorylation and activation by p38alpha was observed to be efficient under conditions where substrate is saturating (kcat(app) = 0.05-0.3 s(-1)) and nonsaturating (kcat(app)/KM(app) = 1-3 x 10(6) M(-1) s(-1)). Specific interactions between the carboxy-terminal residues of MK2a (370-400) and p38alpha precipitate formation of a high-affinity complex (Kd = 20 nM); the p38alpha-dependent MK2a phosphorylation reaction was inhibited by the 30-amino acid docking domain peptide of MK2a (IC50 = 60 nM). The results indicate that the 30-amino acid docking domain peptide of MK2a is required for the formation of a tight, functional p38alpha.MK2a complex, and that perturbation of the tight-docking interaction between these signaling partners prevents the phosphorylation of MK2a. The thermodynamic and steady-state kinetic characterization of the p38alpha.MK2a signaling complex has led to a clear understanding of complex formation, catalysis, and function on the molecular level.  相似文献   

6.
The synthesis and structure-activity relationships (SAR) of p38alpha MAP kinase inhibitors based on heterobicyclic scaffolds are described. This effort led to the identification of compound (21) as a potent inhibitor of p38alpha MAP kinase with good cellular potency toward the inhibition of TNF-alpha production. X-ray co-crystallography of an oxalamide analog (24) bound to unphosphorylated p38alpha is also disclosed.  相似文献   

7.
We previously showed that sphingosine 1-phosphate phosphorylates p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine 1-phosphate on phospholipase C-catalyzing phosphoinositide hydrolysis induced by prostaglandin F2alpha (PGF2 alpha) in these cells. Sphingosine 1-phosphate significantly amplified the inositol phosphates formation by PGF2 alpha. Sphingosine 1-phosphate did not enhance the formation induced by NaF, a direct activator of heterotrimeric GTP-binding proteins. PD98059, an inhibitor of the kinase that activates p42/p44 MAP kinase, had little effect on the amplification by sphingosine 1-phosphate. SB203580, an inhibitor of p38 MAP kinase, reduced the effect of sphingosine 1-phosphate on the formation of inositol phosphates by PGF2 alpha. The phosphorylation of p42/p44 MAP kinase by PGF alpha was attenuated by PD98059. SB203580 suppressed the phosphorylation of p38 MAP kinase by PGF2 alpha. Tumor necrosis factor-alpha enhanced the PGF2 alpha-stimulated formation of inositol phosphates. These results strongly suggest that sphingosine 1-phosphate amplifies PGF2 alpha-induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in osteoblasts.  相似文献   

8.
The alpha(2) integrin subunit cytoplasmic domain uniquely supported epidermal growth factor (EGF)-stimulated migration on type I collagen. p38 MAP kinase- and phosphatidylinositol 3-kinase-specific inhibitors, but not a MEK-specific inhibitor, eliminated EGF-stimulated and unstimulated alpha(2)-cytoplasmic domain-dependent migration. Following adhesion to collagenous matrices, cells expressing the full-length alpha(2) integrin subunit, but not cells expressing a chimeric alpha(2) integrin subunit in which the alpha(2)-cytoplasmic domain was replaced by the cytoplasmic domain of the alpha(1)-subunit, exhibited sustained and robust phosphorylation of p38 MAP kinase. Expression of dominant negative p38 MAP kinase inhibited alpha(2)-cytoplasmic domain-dependent, EGF-stimulated migration as well as unstimulated migration on collagen. Expression of constitutively active Rac1(Val-12) augmented p38 MAP kinase activation and alpha(2)-cytoplasmic domain-dependent migration. It also rescued the ability of cells expressing the alpha(1)-cytoplasmic domain to activate p38 MAPK and to migrate. These results suggest that the alpha(2) integrin cytoplasmic domain uniquely stimulates the p38 MAP kinase pathway that is required for unstimulated and EGF-stimulated migration on type I collagen.  相似文献   

9.
In the EAhy926 endothelial cell line, UTP, ATP, and forskolin, but not UDP and epidermal growth factor, inhibited tumor necrosis factor alpha (TNFalpha)- and sorbitol stimulation of the stress-activated protein kinases, JNK, and p38 mitogen-activated protein (MAP) kinase, and MAPKAP kinase-2, the downstream target of p38 MAP kinase. In NCT2544 keratinocytes, UTP and a proteinase-activated receptor-2 agonist caused similar inhibition, but in 13121N1 cells, transfected with the human P2Y(2) or P2Y(4) receptor, UTP stimulated JNK and p38 MAP kinase activities. This suggests that the effects mediated by P2Y receptors are cell-specific. The inhibitory effects of UTP were not due to induction of MAP kinase phosphatase-1, but were manifest upstream in the pathway at the level of MEK-4. The inhibitory effect of UTP was insensitive to the MEK-1 inhibitor PD 098059, changes in intracellular Ca(2+) levels, or pertussis toxin. Acute phorbol 12-myristate 13-acetate pretreatment also inhibited TNFalpha-stimulated SAP kinase activity, while chronic pretreatment reversed the effects of UTP. Furthermore, the protein kinase C inhibitors Ro318220 and Go6983 reversed the inhibitory action of UTP, but GF109203X was ineffective. These results indicate a novel mechanism of cross-talk regulation between P2Y receptors and TNFalpha-stimulated SAP kinase pathways in endothelial cells, mediated by Ca(2+)-independent isoforms of protein kinase C.  相似文献   

10.
11.
Despite its lack of specificity, the inhibitor SB 203580 has been widely used to implicate p38 mitogen-activated protein kinase (MAPK) in the synthesis of many cytokines. Here we show unequivocally that the production of interleukin (IL)-1beta, IL-6, IL-10, and tumor necrosis factor alpha (TNFalpha) requires p38 MAPK activity by demonstrating that the inhibitory effects of SB 203580 were reversed by expression of an SB 203580-resistant form of p38alpha (SBR-p38alpha) that fails to bind to SB 203580. This strategy established the requirement for p38 activity for the lipopolysaccharide-stimulated production of IL-10, IL-1beta, and IL-6 by the monocytic cell WEHI 274 and the production of IL-6 and TNFalpha stimulated by ligation of the Fc-gamma receptor of the mast cell MC/9. Expression of SBR-p38alpha in primary macrophages abrogated the ability of SB 203580 to inhibit the lipopolysaccharide-stimulated production of TNFalpha but not of IL-10. Expression of SBR-p38alpha in primary T lymphocytes abrogated the ability of SB 203580 to inhibit the production of interferon-gamma induced by co-ligation of CD3 and CD28 but not the production of interferon-gamma or IL-10 induced by IL-12. These results suggest that the levels of p38 MAPK activity required for maximal cytokine production vary with different cytokines and stimuli.  相似文献   

12.
13.
We previously showed that sphingosine inhibits prostaglandin F(2alpha) (PGF(2alpha))-stimulated interleukin-6 synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine on phospholipase C-catalyzing phosphoinositide hydrolysis induced by PGF(2alpha) in these cells. Sphingosine inhibited the inositol phosphates formation by PGF(2alpha) or NaF, a GTP-binding protein activator. Sphingosine induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase but did not affect the phosphorylation of p42/p44 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, rescued the inhibitory effect of sphingosine on the formation of inositol phosphates by PGF(2alpha) or NaF. These results indicate that sphingosine inhibits PGF(2alpha)-induced phosphoinositide hydrolysis by phospholipase C via p38 MAP kinase in osteoblasts.  相似文献   

14.
Previous studies demonstrated that neutrophil adherence induces ICAM-1-dependent cytoskeletal changes in TNF-alpha-treated pulmonary microvascular endothelial cells that are prevented by a pharmacological inhibitor of p38 MAP kinase. This study determined whether neutrophil adherence induces activation of p38 MAP kinase in endothelial cells, the subcellular localization of phosphorylated p38, which MAP kinase kinases lead to p38 activation, which p38 isoform is activated, and what the downstream targets may be. Confocal microscopy showed that neutrophil adhesion for 2 or 6 min induced an increase in phosphorylated p38 in endothelial cells that was punctate and concentrated in the central region of the endothelial cells. Studies using small interfering RNA (siRNA) to inhibit the protein expression of MAP kinase kinase 3 and 6, either singly or in combination, showed that both MAP kinase kinases were required for p38 phosphorylation. Studies using an antisense oligonucleotide to p38alpha demonstrated that inhibition of the protein expression of p38alpha 1) inhibited activation of p38 MAP kinase without affecting the protein expression of p38beta; 2) prevented phosphorylation of heat shock protein 27, an actin binding protein that may induce actin polymerization upon phosphorylation; 3) attenuated cytoskeletal changes; and 4) attenuated neutrophil migration to the EC borders. Thus MAP kinase kinase3- and 6-dependent activation of the alpha-isoform of p38 MAP kinase is required for the cytoskeletal changes induced by neutrophil adherence and influences subsequent neutrophil migration toward endothelial cell junctions.  相似文献   

15.
The mitogen-activated protein (MAP) kinases are essential signaling molecules that mediate many cellular effects of growth factors, cytokines, and stress stimuli. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Down-regulation of MAP kinase activity can be initiated by multiple serine/threonine phosphatases, tyrosine-specific phosphatases, and dual specificity phosphatases (MAP kinase phosphatases). This would inevitably lead to the formation of monophosphorylated MAP kinases. However, the biological functions of these monophosphorylated MAP kinases are currently not clear. In this study, we have prepared MAP kinase p38alpha, a member of the MAP kinase family, in all phosphorylated forms and characterized their biochemical properties. Our results indicated the following: (i) p38alpha phosphorylated at both Thr-180 and Tyr-182 was 10-20-fold more active than p38alpha phosphorylated at Thr-180 only, whereas p38alpha phosphorylated at Tyr-182 alone was inactive; (ii) the dual-specific MKP5, the tyrosine-specific hematopoietic protein-tyrosine phosphatase, and the serine/threonine-specific PP2Calpha are all highly specific for the dephosphorylation of p38alpha, and the dephosphorylation rates were significantly affected by different phosphorylated states of p38alpha; (iii) the N-terminal domain of MPK5 has no effect on enzyme catalysis, whereas deletion of the MAP kinase-binding domain in MKP5 leads to a 370-fold decrease in k(cat)/K(m) for the dephosphorylation of p38alpha. This study has thus revealed the quantitative contributions of phosphorylation of Thr, Tyr, or both to the activation of p38alpha and to the substrate specificity for various phosphatases.  相似文献   

16.
Airway epithelial cells which are the initial site of influenza virus (IV) infection are suggested to participate in airway inflammatory response by expressing various cytokines including RANTES; however, the intracellular signal that regulates RANTES expression has not been determined. In the present study, we examined the role of p38 mitogen-activated protein (MAP) kinase, extracellular signal-regulated kinase (Erk), and c-Jun-NH2-terminal kinase (JNK) in RANTES production by IV-infected human bronchial epithelial cells. The results showed that IV infection induced increases in p38 MAP kinase, and Erk and JNK phosphorylation and activity. SB 203580, PD 98059, and CEP-1347 attenuated IV-infection induced p38 MAP kinase activity, Erk activity, and JNK activity, respectively. SB 203580 and CEP-1347 attenuated RANTES production by 45.3% and 45.2%, respectively, but a combination of these inhibitors additively attenuated by 69.1%. In contrast, PD 98059 did not attenuate. Anti-IL-1alpha mAb, anti-IL-1beta mAb, anti-TNF-alpha mAb, anti-IL-8 mAb, anti-IFN-beta mAb, anti-RANTES mAb, and a combination of these mAbs did not affect IV infection-induced increases in p38 MAP kinase, Erk, and JNK phosphorylation, indicating that each cytokine neutralized by corresponding Ab was not involved in IV infection-induced phosphorylation of MAP kinases. N-acetylcysteine (NAC) did not affect IV infection-induced increases in MAP kinase phosphorylation, whereas NAC attenuated RANTES production by 18.2%, indicating that reactive oxygen species may act as a second messenger leading to RANTES production via p38 MAP kinase- and JNK-independent pathway. These results indicate that p38 MAP kinase and JNK, at least in part, regulate RANTES production by bronchial epithelial cells.  相似文献   

17.
18.
U46619, a thromboxane A2 mimetic, but not ADP, caused activation of p38 mitogen activated protein (MAP) kinase in aspirin-treated platelets. In nonaspirinated human platelets ADP activated p38 MAP kinase in both a time-and concentration-dependent manner, suggesting that ADP-induced p38 MAP kinase activation requires generation of thromboxane A2. However, neither a thromboxane A2/prostaglandin H2 receptor antagonist SQ29548 and a thromboxane synthase inhibitor, furegrelate, either alone or together, nor indomethacin blocked ADP-induced p38 kinase activation in nonaspirinated platelets. Other cycloxygenase products, PGE2, PGD2, and PGF2alpha, failed to activate p38 kinase in aspirin-treated platelets. Hence, ADP must be generating an agonist, other than thromboxane A2, via an aspirin-sensitive pathway, which is capable of activating p38 kinase. AR-C66096, a P2TAC (platelet ADP receptor coupled to inhibition of adenylate cyclase) antagonist, did not inhibit ADP-induced p38 MAP kinase activation. The P2X receptor selective agonist, alpha, beta-methylene ATP, failed to activate p38 MAP kinase. On the other hand, the P2Y1 receptor selective antagonist, adenosine-2'-phosphate-5'-phosphate inhibited ADP-induced p38 kinase activation in a concentration-dependent manner, indicating that the P2Y1 receptor alone mediates ADP-induced generation of the p38 kinase-activating factor. These results demonstrate that ADP causes the generation of a factor in human platelets, which can activate p38 kinase, and that this response is mediated by the P2Y1 receptor. Neither the P2TAC receptor nor the P2X1 receptor has any significant role in this response.  相似文献   

19.
The p38 MAP kinase signal transduction pathway is an important regulator of proinflammatory cytokine production and inflammation. Defining the roles of the various p38 family members, specifically p38alpha and p38beta, in these processes has been difficult. Here we use a chemical genetics approach using knock-in mice in which either p38alpha or p38beta kinase has been rendered resistant to the effects of specific inhibitors along with p38beta knock-out mice to dissect the biological function of these specific kinase isoforms. Mice harboring a T106M mutation in p38alpha are resistant to pharmacological inhibition of LPS-induced TNF production and collagen antibody-induced arthritis, indicating that p38beta activity is not required for acute or chronic inflammatory responses. LPS-induced TNF production, however, is still completely sensitive to p38 inhibitors in mice with a T106M point mutation in p38beta. Similarly, p38beta knock-out mice respond normally to inflammatory stimuli. These results demonstrate conclusively that specific inhibition of the p38alpha isoform is necessary and sufficient for anti-inflammatory efficacy in vivo.  相似文献   

20.
Inhibition of p38alpha MAP kinase is a potential approach for the treatment of inflammatory disorders. MKK6-dependent phosphorylation on the activation loop of p38alpha increases its catalytic activity and affinity for ATP. An inhibitor, BIRB796, binds at a site used by the purine moiety of ATP and extends into a "selectivity pocket", which is not used by ATP. It displaces the Asp168-Phe169-Gly170 motif at the start of the activation loop, promoting a "DFG-out" conformation. Some other inhibitors bind only in the purine site, with p38alpha remaining in a "DFG-in" conformation. We now demonstrate that selectivity pocket compounds prevent MKK6-dependent activation of p38alpha in addition to inhibiting catalysis by activated p38alpha. Inhibitors using only the purine site do not prevent MKK6-dependent activation. We present kinetic analyses of seven inhibitors, whose crystal structures as complexes with p38alpha have been determined. This work includes four new crystal structures and a novel assay to measure K(d) for nonactivated p38alpha. Selectivity pocket compounds associate with p38alpha over 30-fold more slowly than purine site compounds, apparently due to low abundance of the DFG-out conformation. At concentrations that inhibit cellular production of an inflammatory cytokine, TNFalpha, selectivity pocket compounds decrease levels of phosphorylated p38alpha and beta. Stabilization of a DFG-out conformation appears to interfere with recognition of p38alpha as a substrate by MKK6. ATP competes less effectively for prevention of activation than for inhibition of catalysis. By binding to a different conformation of the enzyme, compounds that prevent activation offer an alternative approach to modulation of p38alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号