首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Localization of lipoprotein lipase mRNA in selected rat tissues   总被引:2,自引:0,他引:2  
Measurements of enzymatic activity have demonstrated that lipoprotein lipase (LPL), the principal enzyme responsible for hydrolysis of circulating triglyceride, is present in a number of tissues including brain, kidney, and adrenal gland. To determine the sites of synthesis of LPL in these tissues, in situ hybridization studies were performed using a non-sense 35S-labeled RNA probe produced from a 624-bp mouse LPL cDNA fragment. Control studies were performed with a sense RNA strand. Using 5-10-micron sections of 5-day-old rat brain, strong hybridization was found in pyramidal neurons of the hippocampus. Positive hybridization, indicating the presence of LPL mRNA, was also found in brain cortex and in the intermediate lobe of adult rat pituitary gland. Specific areas of adrenal and kidney medulla showed hybridization with the probe. LPL mRNA is, therefore, present in a number of specific regions of the body. LPL in these areas may not be important in regulating circulating levels of lipoproteins, but may be essential for cellular uptake, binding, and transfer of free fatty acids or other lipophilic substances.  相似文献   

4.
Two types of C3G cDNA were isolated from mouse 3T3-L1 adipocyte cDNA library. A 114-bp sequence in the middle of C3G cDNA is deleted in the short type cDNA. By RT-PCR analysis, it was found that these two types of C3G mRNA existed in all the mouse tissues. Sequence comparison revealed 88% nucleotide sequence identity between mouse and human C3G cDNA. Comparison of mouse C3G cDNA with the human genome database suggested that this 114-bp sequence comprised an entire exon, and it is confirmed by PCR analysis using mouse genomic DNA and cDNA template. These results indicate that two C3G mRNAs and proteins result from alternative RNA splicing.  相似文献   

5.
Although the human steroid sulfatase (STS) gene has been cloned and characterized in detail, several attempts to clone its mouse homologue, with either anti-human STS antibodies or human STS cDNA probes, have failed, suggesting a substantial divergence between these genes. However, partial amino-terminal sequence from purified rat liver STS is very similar to its human counterpart, and sequence comparisons have revealed several domains that are conserved among all the sulfatases characterized to date. Thus, we used a degenerate-primer RT-PCR approach to amplify a 321-bp fragment from rat liver cDNA, which was used as a probe to clone and characterize the complete cDNA. Comparison of the protein coding region between the rat and human genes showed 66% homology both at the DNA and the protein levels. STS activity was conferred to STS(−) A9 cells upon transfection with a rat Sts expression construct, indicating the authenticity of the cloned cDNA. While Sts has been shown to be located in the mouse pseudoautosomal region, both physical and genetic mapping demonstrate that Sts is not pseudoautosomal in the rat. The overall genomic organization of rat Sts and human STS is very similar, except that the insertion site for intron 1 in the rat is 26 bp upstream from that in the human. Rat Sts is only 8.2 kb long, while the human STS spans over 146 kb. Received: 24 October 1995 / Accepted: 5 March 1996  相似文献   

6.
Isolation of a full-length cDNA encoding mouse aromatase P450   总被引:1,自引:0,他引:1  
A full-length cDNA clone for aromatase P450 has been isolated from a pregnant mouse ovarian cDNA library. The insert of this clone (2394 bp) contains a 1509-bp open reading frame encoding 503 amino acid residues together with a 46-bp 5'-untranslated stretch and an 839-bp 3'-untranslated region to which a poly(A) tract is attached. Northern blot analysis of ovarian RNA from pregnant mice reveals a major mRNA band of 2.5 kb with a minor band of 2.1 kb. Comparison of mouse aromatase P450 with that of rat, human, and chicken shows 91, 81, and 69% identity in the nucleotide sequence and 92, 79, and 69% identity in the deduced amino acid sequence, respectively. The membrane-spanning domain of mouse aromatase P450 is estimated to be an extremely hydrophobic segment located within the N-terminal region of the molecule. Furthermore, a highly conserved heme-binding domain is noticed.  相似文献   

7.
8.
We report here a study of the developmental and genetic control of tissue-specific expression of lipoprotein lipase, the enzyme responsible for hydrolysis of triglycerides in chylomicrons and very low density lipoproteins. Lipoprotein lipase (LPL) mRNA is present in a wide variety of adult rat and mouse tissues examined, albeit at very different levels. A remarkable increase in the levels of LPL mRNA occurs in heart over a period of several weeks following birth, closely paralleling developmental changes in lipase activity and myocardial beta-oxidation capacity. Large increases in LPL mRNA also occur during differentiation of 3T3L1 cells to adipocytes. As previously reported, at least two separate genetic loci control the tissue-specific expression of LPL activity in mice. One of the loci, controlling LPL activity in heart, is associated with an alteration in LPL mRNA size, while the other, controlling LPL activity in adipose tissue, appears to affect the translation or post-translational expression of LPL. To examine whether these genetic variations are due to mutations of the LPL structural locus, we mapped the LPL gene to a region of mouse chromosome 8 using restriction fragment-length polymorphisms and analysis of hamster-mouse somatic cell hybrids. This region is homologous to the region of human chromosome 8 which contains the human LPL gene as judged by the conservation of linked genetic markers. Genetic variations affecting LPL expression in heart cosegregated with the LPL gene, while variations affecting LPL expression in adipose tissue did not. Furthermore, Southern blotting analysis indicates that LPL is encoded by a single gene and, thus, the genetic differences are not a consequence of independent regulation of two separate genes in the two tissues. These results suggest the existence of cis-acting elements for LPL gene expression that operate in heart but not adipose tissue. Our results also indicate that two genetic mutations resulting in deficiencies of LPL in mice, the W mutation on chromosome 5 and the cld mutation on mouse chromosome 17, do not involve the LPL structural gene locus. Finally, we show that the gene for hepatic lipase, a member of a gene family with LPL, is unlinked to the gene for LPL. This indicates that combined deficiencies of LPL and hepatic lipase, observed in humans as well as in certain mutant strains of mice, do not result from focal disruptions of a cluster of lipase genes.  相似文献   

9.
R Zeheb  T D Gelehrter 《Gene》1988,73(2):459-468
A cDNA encoding rat plasminogen activator-inhibitor (PAI-1) has been isolated from an HTC rat hepatoma cell cDNA library constructed in phage lambda gt10. The cDNA contains 118 bp of 5'-untranslated sequence, 1206 bp encoding a 402-amino acid (aa) protein and 1747 bp of 3'-untranslated sequence. The protein-coding sequence and the derived amino acid sequence share 82% and 81% identity, respectively, with human PAI-1 cDNA and protein. The rat cDNA encodes a preprotein with a 23-aa leader peptide and a predicted N-terminal serine for the mature protein. Three of four potential N-glycosylation acceptor sites as well as the active site of rat PAI-1 are identical to the human protein. The 3'-untranslated region contains a number of unusual regions, including 80 bp of tandemly repeated GpA dinucleotides, a 115-bp stretch which shares greater than 90% sequence identity with a region within the 3'-untranslated cDNA of human PAI-1, and two 70-bp stretches of highly T-rich sequence located close to the 3'-terminus of the cDNA.  相似文献   

10.
11.
12.
A cytosolic acetyl-CoA hydrolase (CACH) was purified from rat liver to homogeneity by a new method using Triton X-100 as a stabilizer. We digested the purified enzyme with an endopeptidase and determined the N-terminal amino-acid sequences of the two proteolytic fragments. From the sequence data, we designed probes for RT-PCR, and amplified CACH cDNA from rat liver mRNA. The CACH cDNA contains a 1668-bp ORF encoding a protein of 556 amino-acid residues (62 017 Da). Recombinant expression of the cDNA in insect cells resulted in overproduction of functional acetyl-CoA hydrolase with comparable acyl-CoA chain-length specificity and Michaelis constant for acetyl-CoA to those of the native CACH. Database searching shows no homology to other known proteins, but reveals high similarities to two mouse expressed sequence tags (91% and 93% homology) and human mRNA for KIAA0707 hypothetical protein (50% homology) of unknown function.  相似文献   

13.
cDNA clones were isolated by screening a human thyroid carcinoma lambda gt11 library with immunoglobulins purified from serum of a patient with autoimmune Graves' disease. One clone (ML8) containing a 1.25-kilobase (kb) insert hybridized with a single 2.0-kb poly(A+) mRNA in human thyroid and lymphocytes but not in human brain, liver, kidney, or muscle. In addition, this probe also hybridized with a single 2.0-kb poly(A+) mRNA from a rat thyroid cell line (FRTL-5). An apparently full length 2,074-base pair (bp) human cDNA was obtained and sequenced. The nucleotide sequence of the 2,074-bp cDNA includes a 5'-noncoding sequence of 17 bp, a 1827-bp open reading frame, and a 222-bp 3'-noncoding sequence. The canonical polyadenylation signal AATAAA is present 18 bp upstream of the poly(A) tail. This cDNA encodes a 69,812-dalton protein with two potential N-linked glycosylation sites and at least one potential membrane spanning domain. Immunoprecipitation of the in vitro translated protein by sera from several patients with Graves' disease argues that the 69,812-dalton protein is an autoantigen.  相似文献   

14.
The status of lipoprotein lipase (LPL) has been examined in different cell types (adipose, skeletal muscle, and heart muscle cells) and different tissues (adipose, muscle, and cardiac tissues) from mouse, rat, and human. Cell and secreted activities were compared in cycloheximide-, heparin-treated cells present in culture. A gross underestimation of cell LPL activity was found; excess of LPL over substrate and/or apolipoprotein C-II was excluded as well as inhibition by cell component(s) or detergent molecules used to disrupt membrane structures in the cell lysates. Unmasking of LPL activity occurred upon dilution: the higher the concentration of LPL, the higher were the dilution factor and the concentration of heparin required to reach a plateau of activity. This maximal value was found to be identical to that determined in the secretion medium, indicating that the cell LPL activity can be determined in toto. The unmasking effect of dilution upon LPL activity was extended to adipose, muscle, and cardiac tissues from rat and to adipose tissues from mouse and human. In agreement with previous results (Vannier et al., 1989, J. Biol. 264: 13199-13205), our results are in favor of LPL as being cryptic within the cell. A model is proposed, in which potentially active LPL molecules are present as aggregates in various membrane compartments. It is concluded that the determination of the pool size of catalytically active cell LPL has to be estimated in vitro under the appropriate conditions described herein.  相似文献   

15.
Appraisal of hepatic lipase and lipoprotein lipase activities in mice   总被引:1,自引:0,他引:1  
A variety of methods are currently used to analyze HL and LPL activities in mice. In search of a simple methodology, we analyzed mouse preheparin and postheparin plasma LPL and HL activities using specific polyclonal antibodies raised in rabbit against rat HL (anti-HL) and in goat against rat LPL (anti-LPL). As an alternative, we analyzed HL activity in the presence of 1 M NaCl, a condition known to inhibit LPL activity in humans. The assays were validated using plasma samples from wild-type and HL-deficient C57BL/6 mice. We now show that the use of 1 M NaCl for the inhibition of plasma LPL activity in mice may generate incorrect measurements of both LPL and HL activities. Our data indicate that HL can be measured directly, without heparin injection, in preheparin plasma, because virtually all HL is present in an unbound form circulating in plasma. In contrast, measurable LPL activity is present only in postheparin plasma. Both HL and LPL can be measured using the same assay conditions (low salt and the presence of apolipoprotein C-II as an LPL activator). Total lipase activity in postheparin plasma minus preheparin HL activity reflects LPL activity. Specific antibodies are not required.  相似文献   

16.
Four members of the endothelin family of vasoactive and mitogenic peptides have been identified: human endothelins 1, 2, and 3 (ET1, ET2, and ET3, respectively) and mouse vasoactive intestinal contractor (VIC). To characterize the mRNA encoding ET2, a 192-bp fragment of the ET2 gene, amplified by the polymerase chain reaction from human genomic DNA, was used to screen cell lines and tissues for ET2 gene expression. ET2 mRNA was detected in a cell line (HTB119) derived from a human lung small cell carcinoma, and an ET2 cDNA was cloned from a cDNA library prepared from HTB119 mRNA. DNA prepared from human-mouse somatic hybrid cell lines was used to assign the gene encoding ET2 (EDN2) to the 1p21----1pter region of chromosome 1, demonstrating that EDN2 is not linked to genes encoding ET1 (EDN1; chromosome 6) and ET3 (EDN3; chromosome 20). Southern blot hybridization revealed a single gene in human and rat genomes that hybridized with the ET2 gene fragment, and the rat gene was cloned. The endothelin peptide encoded by the rat gene differed from ET2 at 1 of 21 residues and was identical to mouse VIC. We conclude that VIC is the mouse and rat analogue of the human ET2 gene.  相似文献   

17.
18.
Nucleotide sequence of mouse Tcp-1a cDNA   总被引:3,自引:0,他引:3  
We have isolated complete cDNA clones encoding the mouse t-complex polypeptides 1A and 1B (TCP-1A and TCP-1B) from t-haplotype and wild-type (wt) mice, respectively. The complete nucleotide (nt) sequence of the Tcp-1a cDNA was determined. The Tcp-1a cDNA has an open reading frame (ORF) encoding a 60-kDa protein of 556 amino acids (aa). A comparison of nt sequences between the Tcp-1a and Tcp-1b cDNAs revealed that the 1786-bp regions upstream from their polyadenylation signals differed by 17 substitutions and that Tcp-1a had different polyadenylation sites from Tcp-1b. In these ORFs, 15 bp were substituted between the two alleles, occurring in 14 codons and resulting in eleven single-aa substitutions. Among these 15 substitutions, twelve were nonsynonymous (aa change) and three were synonymous (no aa change). The aa substitution in TCP-1 has occurred at least 20 times faster between t-haplotype and wt than between mouse and human or mouse and Drosophila.  相似文献   

19.
We have cloned and sequenced the cDNA corresponding to the rat preproepidermal growth factor (ppEGF) mRNA. The cDNA contained 4,801 nucleotides, similar to that reported for the mouse (4,749 nucleotides) and the human mRNAs (4,871 nucleotides). The predicted protein sequence would contain 1,133 amino acids, smaller than that reported for the mouse (1,217 amino acids) and the human sequences (1,207 amino acids). The results of the sequencing of several cDNA clones suggested the existence of more than one structural gene for ppEGF. In addition, there was an occurrence of alternative splicing events, resulting in deletions of entire exons from the mature mRNA. These alternative splicing events do not create frameshift mutations but cause a deletion of one or more of the "EGF-like" repeat units from the ppEGF. There is approximately the same homology between the rat and mouse amino acid sequences both in the EGF region and in the other regions of the ppEGF protein. We conclude that, because of this conservation of homology, there may be an important function performed by these other regions of the ppEGF besides their function as a precursor for the EGF protein.  相似文献   

20.
M Takase  I Miura  A Nakata  T Takeuchi  M Nishioka 《Gene》1992,121(2):359-363
We cloned and sequenced the cDNA encoding tyrosinase (TYN) of the Japanese pond frog, Rana nigromaculata. The 3511-bp cDNA contained a 54-bp 5'-noncoding region, a 1596-bp open reading frame encoding TYN of 532 amino acids (aa), and a 1861-bp 3'-noncoding region. The aa sequence of frog TYN predicted from the cDNA sequence was homologous to that of mouse and human TYNs. The aa sequence including the copper-binding domain, which is likely the active center of TYN, was highly conserved among these three species and Neurospora crassa, Streptomyces antibioticus, and S. glaucescens. The frog TYN also contains possible glycosylation sites and conserved Cys at sites similar to those in the mouse and human TYNs. There are two hydrophobic regions at the N-terminus and near the C-terminus, which are likely the signal (leader) peptide and a transmembrane domain, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号