首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streel E  Bredas P  Dan B  Hanak C  Pelc I  Verbanck P 《Life sciences》2000,67(23):2883-2887
We hypothesized that induction of opiate antagonist-precipitated withdrawal under anesthesia can decrease the expression of later withdrawal signs. Three groups of morphine-dependent rats were compared in different experimental conditions of withdrawal precipitation using naloxone. We showed that anesthesia can temporarily overshadow the expression of withdrawal signs, but that some signs can be delayed and increased in intensity. This can be explained by a parallel and temporary effect of anesthesia on arousal and pain threshold. This carries important implications on the use of anesthesia in detoxification procedures.  相似文献   

2.
Clustering techniques have been widely used in the analysis of microarray data to group genes with similar expression profiles. The similarity of expression profiles and hence the results of clustering greatly depend on how the data has been transformed. We present a method that uses the relative expression changes between pairs of conditions and an angular transformation to define the similarity of gene expression patterns. The pairwise comparisons of experimental conditions can be chosen to reflect the purpose of clustering allowing control the definition of similarity between genes. A variational Bayes mixture modeling approach is then used to find clusters within the transformed data. The purpose of microarray data analysis is often to locate groups genes showing particular patterns of expression change and within these groups to locate specific target genes that may warrant further experimental investigation. We show that the angular transformation maps data to a representation from which information, in terms of relative regulation changes, can be automatically mined. This information can be then be used to understand the "features" of expression change important to different clusters allowing potentially interesting clusters to be easily located. Finally, we show how the genes within a cluster can be visualized in terms of their expression pattern and intensity change, allowing potential target genes to be highlighted within the clusters of interest.  相似文献   

3.
Traditionally housekeeping genes have been employed as endogenous reference (internal control) genes for normalization in gene expression studies. Since the utilization of single housekeepers cannot assure an unbiased result, new normalization methods involving multiple housekeeping genes and normalizing using their mean expression have been recently proposed. Moreover, since a gold standard gene suitable for every experimental condition does not exist, it is also necessary to validate the expression stability of every putative control gene on the specific requirements of the planned experiment. As a consequence, finding a good set of reference genes is for sure a non-trivial problem requiring quite a lot of lab-based experimental testing. In this work we identified novel candidate barley reference genes suitable for normalization in gene expression studies. An advanced web search approach aimed to collect, from publicly available web resources, the most interesting information regarding the expression profiling of candidate housekeepers on a specific experimental basis has been set up and applied, as an example, on stress conditions. A complementary lab-based analysis has been carried out to verify the expression profile of the selected genes in different tissues and during heat shock response. This combined dry/wet approach can be applied to any species and physiological condition of interest and can be considered very helpful to identify putative reference genes to be shortlisted every time a new experimental design has to be set up.  相似文献   

4.

Background  

Gene expression data can be analyzed by summarizing groups of individual gene expression profiles based on GO annotation information. The mean expression profile per group can then be used to identify interesting GO categories in relation to the experimental settings. However, the expression profiles present in GO classes are often heterogeneous, i.e., there are several different expression profiles within one class. As a result, important experimental findings can be obscured because the summarizing profile does not seem to be of interest. We propose to tackle this problem by finding homogeneous subclasses within GO categories: preclustering.  相似文献   

5.
We carried out a series of replicate experiments on DNA microarrays using two cell lines and two technologies--the Agilent Human 1A Microarray and the GE Amersham Codelink Uniset Human 20K I Bioarray. We demonstrated that quantifying the noise level as a function of signal strength allows identification of the absolute and differential mRNA expression levels at which biological variability can be resolved above measurement noise. This represents a new formulation of a sensitivity threshold that can be used to compare platforms. It was found that the correlation in expression level between platforms is considerably worse than the correlation between replicate measurements taken using the same platform. In addition, we carried out replicate measurements at different stages of sample processing. This novel approach enables us to quantify the noise introduced into the measurements at each step of the experimental protocol. We demonstrated how this information can be used to determine the most efficient means of using replicates to reduce experimental uncertainty.  相似文献   

6.
The biclustering method can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse in gene expression measurement. This is because the biclustering approach, in contrast to the conventional clustering techniques, focuses on finding a subset of the genes and a subset of the experimental conditions that together exhibit coherent behavior. However, the biclustering problem is inherently intractable, and it is often computationally costly to find biclusters with high levels of coherence. In this work, we propose a novel biclustering algorithm that exploits the zero-suppressed binary decision diagrams (ZBDDs) data structure to cope with the computational challenges. Our method can find all biclusters that satisfy specific input conditions, and it is scalable to practical gene expression data. We also present experimental results confirming the effectiveness of our approach.  相似文献   

7.
Proteomic expression patterns derived from mass spectrometry have been put forward as potential biomarkers for the early diagnosis of cancer and other diseases. This approach has generated much excitement and has led to a large number of new experiments and vast amounts of new data. The data, derived at great expense, can have very little value if careful attention is not paid to the experimental design and analysis. Using examples from surface-enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) and matrix-assisted laser desorption-ionisation/time-of-flight (MALDI-TOF) experiments, we describe several experimental design issues that can corrupt a dataset. Fortunately, the problems we identify can be avoided if attention is paid to potential sources of bias before the experiment is run. With an appropriate experimental design, proteomics technology can be a useful tool for discovering important information relating protein expression to disease.  相似文献   

8.
Gene expression studies using cDNA arrays require robust and sensitive detection methods. Being extremely sensitive, radioactive detection suffers from the influence of signals positioned in each other's vicinity, the 'neighbourhood' effect. This limits the gene density of arrays and the quality of the results obtained. We have investigated the quantitative influence of different parameters on the 'neighbourhood' effect. By using a model experimental system, we could show that the effect is linear and depends only on the intensity of the hybridisation signal. We identified a common factor that can describe the influence of the neighbour spots based on their intensities. This factor is <1%, but it has to be taken into account if a high dynamic range of gene expression is to be detected. We could also derive the factor, although with less precision, from comparison of duplicate spots on arrays of 4565 different clones and replication of the hybridisation experiments. The calculated coefficient applied to our actual experimental results not only revealed previously undetected tissue or cell-specific expression differences, but also increased the dynamic range of detection. It thus provides a relatively simple way of improving DNA array data quality with few experimental modifications.  相似文献   

9.
Here, we describe a system for the exogenous control of gene expression in mammalian cells that relies on the control of translational termination. To achieve gene regulation, we modified protein-coding sequences by introduction of a translational termination codon just downstream from the initiator AUG codon. Translation of the resulting mRNA leads to potent reduction in expression of the desired gene product. Expression of the gene product can be controlled by treating cells that express the mRNA with either aminoglycoside antibiotics or several nonantibiotic compounds. We show that the extent of regulation of gene expression can be substantial (60-fold) and that regulation can be achieved in the case of a variety of different genes, in different cultured cell lines and in primary cells in vivo. This gene regulation strategy offers significant advantages over existing methods for controlling gene expression and should have both immediate experimental application and possible clinical application.  相似文献   

10.
The major goal of two-color cDNA microarray experiments is to measure the relative gene expression level (i.e., relative amount of mRNA) of each gene between samples in studies of gene expression. More specifically, given an N-sample experiment, we need all N(N - 1)/2 relative expression levels of all sample pairs of each gene for identification of the differentially expressed genes and for clustering of gene expression patterns. However, the intensities observed from two-color cDNA microarray experiments do not simply represent the relative gene expression level. They are composed of signal (gene expression level), noise, and other factors. In discussions on the experimental design of two-color cDNA microarray experiments, little attention has been given to the fact that different combinations of test and control samples will produce microarray intensities data with varying intrinsic composition of factors. As a consequence, not all experimental designs for two-color cDNA microarray experiments are able to provide all possible relative gene expression levels. This phenomenon has never been addressed. To obtain all possible relative gene expression levels, a novel method for two-color cDNA microarray experimental design evaluation is necessary that will allow the making of an accurate choice. In this study, we propose a model-based approach to illustrate how the factor composition of microarray intensities changed with different experimental designs in two-color cDNA microarray experiments. By analyzing 12 experimental designs (including 5 general forms), we demonstrate that not all experimental designs are able to provide all possible relative gene expression levels due to the differences in factor composition. Our results indicate that whether an experimental design can provide all possible relative expression levels of all sample pairs for each gene should be the first criterion to be considered in an evaluation of experimental designs for two-color cDNA microarray experiments.  相似文献   

11.
Gene expression studies using cDNA arrays require robust and sensitive detection methods. Being extremely sensitive, radioactive detection suffers from the influence of signals positioned in each other’s vicinity, the ‘neighbourhood’ effect. This limits the gene density of arrays and the quality of the results obtained. We have investigated the quantitative influence of different parameters on the ‘neighbourhood’ effect. By using a model experimental system, we could show that the effect is linear and depends only on the intensity of the hybridisation signal. We identified a common factor that can describe the influence of the neighbour spots based on their intensities. This factor is <1%, but it has to be taken into account if a high dynamic range of gene expression is to be detected. We could also derive the factor, although with less precision, from comparison of duplicate spots on arrays of 4565 different clones and replication of the hybridisation experiments. The calculated coefficient applied to our actual experimental results not only revealed previously undetected tissue or cell-specific expression differences, but also increased the dynamic range of detection. It thus provides a relatively simple way of improving DNA array data quality with few experimental modifications.  相似文献   

12.
MOTIVATION: Time series experiments of cDNA microarrays have been commonly used in various biological studies and conducted under a lot of experimental factors. A popular approach of time series microarray analysis is to compare one gene with another in their expression profiles, and clustering expression sequences is a typical example. On the other hand, a practically important issue in gene expression is to identify the general timing difference that is caused by experimental factors. This type of difference can be extracted by comparing a set of time series expression profiles under a factor with those under another factor, and so it would be difficult to tackle this issue by using only a current approach for time series microarray analysis. RESULTS: We have developed a systematic method to capture the timing difference in gene expression under different experimental factors, based on hidden Markov models. Our model outputs a real-valued vector at each state and has a unique state transition diagram. The parameters of our model are trained from a given set of pairwise (generally multiplewise) expression sequences. We evaluated our model using synthetic as well as real microarray datasets. The results of our experiment indicate that our method worked favourably to identify the timing ordering under different experimental factors, such as that gene expression under heat shock tended to start earlier than that under oxidative stress. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

13.
猪内源性反转录病毒在中国实验小型猪中的存在与表达   总被引:2,自引:0,他引:2  
目的对中国实验小型猪中内源性反转录病毒的存在与mRNA的表达进行检测,摸清中国实验小型猪中内源性反转录病毒的携带情况.方法根据已发表的PERV的序列设计并合成了三对引物,分别用于检测PERV核心蛋白基因(gag)、多聚酶基因(pol)及囊膜基因(env)的存在与表达;同时,根据目前通用的env基因分型方法合成了三对用于分型检测的引物env-A、env-B、env-C.应用PCR、RT-PCR扩增的方法,对来自于中国实验小型猪外周血淋巴细胞的DNA和RNA样品进行了检测.结果在6个被检DNA样品中均检出了PERV特异性DNA的存在;同样,在被检RNA样品中均有PERV特异性RNA的表达,且所表达的PERV均为A型和B型,在所有样品中均未检出C型PERV的表达.结论初步表明中国实验小型猪中存在内源性反转录病毒序列,且能以mRNA的形式表达,这一结果为我国特有小型猪的开发、利用及其病毒安全性评价奠定了基础.  相似文献   

14.
Microarray technology is associated with many sources of experimentaluncertainty. In this review we discuss a number of approachesfor dealing with this uncertainty in the processing of datafrom microarray experiments. We focus here on the analysis ofhigh-density oligonucleotide arrays, such as the popular AffymetrixGeneChip® array, which contain multiple probes for eachtarget. This set of probes can be used to determine an estimatefor the target concentration and can also be used to determinethe experimental uncertainty associated with this measurement.This measurement uncertainty can then be propagated throughthe downstream analysis using probabilistic methods. We giveexamples showing how these credibility intervals can be usedto help identify differential expression, to combine informationfrom replicated experiments and to improve the performance ofprincipal component analysis.   相似文献   

15.
16.
MOTIVATION: The analysis of genome-scale data from different high throughput techniques can be used to obtain lists of genes ordered according to their different behaviours under distinct experimental conditions corresponding to different phenotypes (e.g. differential gene expression between diseased samples and controls, different response to a drug, etc.). The order in which the genes appear in the list is a consequence of the biological roles that the genes play within the cell, which account, at molecular scale, for the macroscopic differences observed between the phenotypes studied. Typically, two steps are followed for understanding the biological processes that differentiate phenotypes at molecular level: first, genes with significant differential expression are selected on the basis of their experimental values and subsequently, the functional properties of these genes are analysed. Instead, we present a simple procedure which combines experimental measurements with available biological information in a way that genes are simultaneously tested in groups related by common functional properties. The method proposed constitutes a very sensitive tool for selecting genes with significant differential behaviour in the experimental conditions tested. RESULTS: We propose the use of a method to scan ordered lists of genes. The method allows the understanding of the biological processes operating at molecular level behind the macroscopic experiment from which the list was generated. This procedure can be useful in situations where it is not possible to obtain statistically significant differences based on the experimental measurements (e.g. low prevalence diseases, etc.). Two examples demonstrate its application in two microarray experiments and the type of information that can be extracted.  相似文献   

17.
Tissue-specific gene expression using the upstream activating sequence (UAS)–GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experimental goals. To simplify these processes, we developed a convertible genetic platform, the integrase swappable in vivo targeting element (InSITE) system. This approach allows GAL4 to be replaced with any other sequence, placing different genetic effectors under the control of the same regulatory elements. Using InSITE, GAL4 can be replaced with LexA or QF, allowing an expression pattern to be repurposed. GAL4 can also be replaced with GAL80 or split-GAL4 hemi-drivers, allowing intersectional approaches to refine expression patterns. The exchanges occur through efficient in vivo manipulations, making it possible to generate many swaps in parallel. This system is modular, allowing future genetic tools to be easily incorporated into the existing framework.  相似文献   

18.
19.
Environmental factors, such as drought, salinity, extreme temperature, ozone poisoning, metal toxicity etc., significantly affect crops. To study these factors and to design a possible remedy, biological experimental data concerning these crops requires the quantification of gene expression and comparative analyses at high throughput level. Development of microarrays is the platform to study the differential expression profiling of the targeted genes. This technology can be applied to gene expression studies, ranging from individual genes to whole genome level. It is now possible to perform the quantification of the differential expression of genes on a glass slide in a single experiment. This review documents recently published reports on the use of microarrays for the identification of genes in different plant species playing their role in different cellular networks under abiotic stresses. The regulation pattern of differentially-expressed genes, individually or in group form, may help us to study different pathways and functions at the cellular and molecular level. These studies can provide us with a lot of useful information to unravel the mystery of abiotic stresses in important crop plants.  相似文献   

20.
When completed this year, the Arabidopsis genome will represent the first plant genome to be fully sequenced. This sequence information, together with the large collection of expressed sequence tags, has established the basics for new approaches to studying gene expression patterns in plants on a global scale. We can now look at biology from the perspective of the whole genome. This revolution in the study of how all genes in an organism respond to certain stimuli has encouraged us to think in new dimensions. Expression profiles can be determined over a range of experimental conditions and organized into patterns that are diagnostic for the biological state of the cell. The field of genome-wide expression in plants has yet to produce its fruit; however, the current application of microarrays in yeast and human research foreshadows the diverse applications this technology could have in plant biology and agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号