首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, Shewanella oneidensis, under mild conditions. Energy dispersive X-ray analyses performed using scanning transmission electron microscopy (STEM) revealed the presence of both metals (Pd/Ag or Pd/Au) in the biosynthesized nanoparticles. X-ray absorption near-edge spectroscopy (XANES) suggested a significant contribution from Pd(0) and Pd(II) in both bio-Pd/Ag and bio-Pd/Au, with Ag and Au existing predominately as their metallic forms. Extended X-ray absorption fine-structure spectroscopy (EXAFS) supported the presence of multiple Pd species in bio-Pd/Ag and bio-Pd/Au, as inferred from Pd–Pd, Pd–O and Pd–S shells. Both bio-Pd/Ag and bio-Pd/Au demonstrated greatly enhanced catalytic activity towards Suzuki–Miyaura cross-coupling compared to a monometallic Pd catalyst, with bio-Pd/Ag significantly outperforming the others. The catalysts were very versatile, tolerating a wide range of substituents. This work demonstrates a green synthesis method for novel bimetallic nanoparticles that display significantly enhanced catalytic activity compared to their monometallic counterparts.  相似文献   

2.
Hong  John  Kim  Byung-Sung  Hou  Bo  Cho  Yuljae  Lee  Sang Hyo  Pak  Sangyeon  Morris  Stephen M.  Sohn  Jung Inn  Cha  SeungNam 《Plasmonics (Norwell, Mass.)》2020,15(4):1007-1013

To improve quantum dot solar cell performance, it is crucial to make efficient use of the available incident sunlight to ensure that the absorption is maximized. The ability of metal nanoparticles to concentrate incident sunlight via plasmon resonance can enhance the overall absorption of photovoltaic cells due to the strong confinement that results from near-field coupling or far-field scattering plasmonic effects. Therefore, to simultaneously and synergistically utilize both plasmonic effects, the placement of different plasmonic nanostructures at the appropriate locations in the device structure is also critical. Here, we introduce two different plasmonic nanoparticles, Au and Ag, to a colloidal PbS quantum dot heterojunction at the top and bottom interface of the electrodes for further improvement of the absorption in the visible and near-infrared spectral regions. The Ag nanoparticles exhibit strong scattering whereas the Au nanoparticles exhibit an intense optical effect in the wavelength region where the absorption of light of the PbS quantum dot is strongest. It is found that these dual-plasmon layers provide significantly improved short-circuit current and power conversion efficiency without any form of trade-off in terms of the fill factor and open-circuit voltage, which may result from the indirect contact between the plasmonic nanoparticles and colloidal quantum dot films.

  相似文献   

3.
Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.  相似文献   

4.

Noble metals, especially Ag and Au nanostructures, have unique and adjustable optical attributes in terms of surface plasmon resonance. In this research, the effect of Ag and Au nanoparticles with spherical and rod shapes on the light extraction efficiency and the FWHM of OLED structures was investigated using the finite difference time domain (FDTD) method. The simulation results displayed that by changing the shape and size of Ag and Au nanostructures, the emission wavelength can be adjusted, and the FWHM can be reduced. The presence of Ag and Au nanoparticles in the OLEDs showed a blue and red shift of the emission wavelength, respectively. Also, the Ag and Au nanorods caused a significant reduction in the FWHM and a shift to the longer wavelengths in the structures. The structures containing Ag nanorods showed the narrowest FWHM and longer emission wavelength than the other structures.

  相似文献   

5.
Studies comparing the effect of adding two different nanoparticle compositions on the plasmonic properties of Au nanovoid arrays were undertaken. Surface-enhanced resonance luminescence and surface-enhanced resonance Raman studies comparing dispersed Ag nanoparticles and Ag nanoparticle aggregates on gold nanovoid arrays were undertaken. These studies showed that using Ag nanoparticle aggregates increased both luminescence and Raman efficiency relative to when dispersed nanoparticles were used; in addition, these studies also showed that adding dispersed Ag nanoparticles supported a more reproducible enhancement in luminescence and Raman across the substrate compared to using Ag nanoparticle aggregates. Finite element analysis simulations indicated that surface plasmon polariton distribution in the sample was affected by the presence of the Ag nanoparticles on the Au nanovoid array.  相似文献   

6.
Wei D  Qian W  Shi Y  Ding S  Xia Y 《Carbohydrate research》2008,343(3):512-520
A facile approach for the synthesis of chitosan-based Au nanostructures that have interesting absorptions in the near-infrared (NIR) region is presented. The effects of cooling treatment and the cross-linking agent glutaraldehyde on the formation of Au nanostructures based on chitosan were investigated. It has been demonstrated that the size and shape, and thus the optical properties of Au nanostructures, could be modulated via cooling treatment. The optical absorption extension of these Au nanostructures in the NIR region is promising in biomedical applications. The presence of a cross-linking agent, glutaraldehyde, during synthesis accelerated the reduction of the Au precursor and favored the growth of isotropic Au nanoparticles. A possible mechanism for the change in growth modality of Au nanostructures with and without glutaraldehyde was elucidated.  相似文献   

7.
Plasmonics - We study by the finite-difference time-domain method the near-field optical properties of isolated or coupled Ag x Au1−x alloy nanoparticles shallowly buried inside dielectric...  相似文献   

8.
We have theoretically studied and optimized the field enhancement and temporal response of single and coupled bimetal Ag/Au core–shell nanoparticles (NPs) with a diameter of 160 nm and compared the results to pure Ag and Au NPs. Very high-field enhancements with an amplitude reaching 100 (with respect to the laser field centered at 800 nm) are found at the center of a 2-nm gap between Ag/Au core–shell dimers. We have explored the excitation of the bimetal core–shell particles by Fourier transform-limited few-cycle optical pulses and identified conditions for an ultrafast plasmonic decay on the order of the excitation pulse duration. The high-field enhancement and ultrafast decay makes bimetal core–shell particles interesting candidates for applications such as the generation of ultrashort extreme ultraviolet radiation pulses via nanoplasmonic field enhancement. Moreover, in first experimental studies, we synthesized small bimetal Ag/Au core–shell NPs and compared their optical response with pure Au and Ag NPs and numerical results.  相似文献   

9.
For the first time, the plasmonic gold bipyramids (Au BPs) are introduced to the PbS colloidal quantum dot (CQD) solar cells for improved infrared light harvesting. The localized surface plasmon resonance peaks of Au BPs matches perfectly with the absorption peaks of conventional PbS CQDs. Owing to the geometrical novelty of Au BPs, they exhibit significantly stronger far‐field scattering effect and near‐field enhancement than conventional plasmonic Au nanospheres (NSs). Consequently, device open‐circuit voltage (Voc) and short‐circuit current (Jsc) are simultaneously enhanced, while plasmonic photovoltaic devices based on Au NSs only achieve improved Jsc. The different effects and working mechanisms of these two Au nanoparticles are systematically investigated. Moreover, to realize effective broadband light harvesting, Au BPs and Au NSs are used together to simultaneously enhance the device optical and electrical properties. As a result, a significantly increased power conversion efficiency (PCE) of 9.58% is obtained compared to the PCE of 8.09% for the control devices due to the synergistic effect of the two plasmonic Au nanoparticles. Thus, this work reveals the intriguing plasmonic effect of Au BPs in CQD solar cells and may provide insight into the future plasmonic enhancement for solution‐processed new‐generation solar cells.  相似文献   

10.
Stem bark extracts of Indian Rosewood, a traditionally used Indian medicinal plant, were used as highly efficient multifunctional green chemicals/biogenic agents in the rapid synthesis of stable, monometallic Ag and Au nanoparticles and their corresponding bimetallic alloy nanoparticles with interesting shapes and morphological characteristics. We determined that the high efficiency of these extracts is due to the presence of complex multifunctional molecules, such as polyphenolics and hydroxyflavonoids, which are involved in the reduction of AuIII and AgI ions to zerovalent metallic nanoparticles and the stabilization of their corresponding nanoparticles.  相似文献   

11.
The outstanding chemical stability of Au and intense localized surface plasmon resonance of Ag make it possible to obtain a nanostructure with a good balance of good chemical stability and optical response. In this paper, we investigated the relationship between optical properties and the composition and size of Ag–Au alloy nanoparticle with numerical calculation by applying experimental data. Simplified empirical formulas are proposed through numerical simulation. The properties of extinction efficiency and the relative contribution of scattering and absorption efficiency to the extinction efficiency have been researched in detail. The calculated result and experimental data has been compared, and good agreement is obtained. Our work contributes greatly to catalysis application of Au–Ag alloy NPs in specific regions.  相似文献   

12.
Scattering efficiencies of Ag–Cu, Ag–Au, and Au–Cu alloy nanoparticles are studied based on Mie theory for their possible applications in solar cells. The effect of size (radius), surrounding medium, and alloy composition on the scattering efficiency at the localized surface plasmon resonance (LSPR) wavelengths has been reported. In the alloy nanoparticles of Ag1?x Cu x , Au1?x Cu x and Ag1?x Au x ; the scattering efficiency gets red-shifted with increase in x. Moreover, the scattering efficiency enhancement can be tuned and controlled with both the alloy composition and the surrounding medium refractive index. A linear relationship which is in good agreement to the experimental observations between the scattering efficiency and metal composition in the alloys are found. The effect of nanoparticle size and LSPR wavelength (scattering peak position) on the full width half maxima and scattering efficiency has also been studied. Comparison of Au–Ag, Au–Cu, and Ag–Cu alloy nanoparticles with 50-nm radii shows the optical response of Ag–Cu alloy nanoparticle with wide bandwidth in the visible region of the electromagnetic spectrum making them suitable for plasmonic solar cells. Further, the comparison of Ag–Cu alloy and core@shell nanoparticles of similar size and surrounding medium shows that Cu@Ag nanoparticle exhibits high scattering efficiency with nearly the same bandwidth.  相似文献   

13.

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

  相似文献   

14.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

15.
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.  相似文献   

16.
Silver-nickel alloy nanoparticles with varying size were synthesized by reducing the metal precursors chemically using a single-step solution-based synthesis route. The structural, optical, and nonlinear optical properties of the prepared samples were investigated. The synthesized samples having highly agglomerated, interconnected nature and found to exhibit dipole and multipole surface plasmon resonance related optical absorption bands. Nonlinear optical and optical limiting properties were investigated using a single beam open aperture z-scan technique with the use of 532 nm, 5-ns laser pulses. The nonlinearity observed was found to have contributions from saturable absorption (SA) and excited state absorption (ESA) related to free carriers. The effective nonlinear optical absorption was enhanced in AgNi alloy compared to pure Ag nanostructures.  相似文献   

17.
Silver and gold nanoparticles in plants: sites for the reduction to metal   总被引:1,自引:0,他引:1  
Induced formation of metal nanoparticles in living plants is poorly understood. The sites for the reduction of Ag(+) and Au(3+) to Ag(0) and Au(0) metal nanoparticles in vivo in plants were investigated in order to better understand the mechanism of the reduction processes. Brassica juncea was grown hydroponically, followed by growth in solutions of AgNO(3), [Ag(NH(3))(2)]NO(3) or HAuCl(4). Harvested plants were sectioned and studied by transmission electron microscopy. Total metal content was analysed by atomic absorption spectroscopy. The chemical state of the metals was determined by X-ray absorption spectroscopy. Nanoparticles of Ag(0) and Au(0) were found in leaves, stem, roots and cell walls of the plants at a concentration of 0.40% Ag and 0.44% Au in the leaves. Particles which were approximately spherical were formed with sizes of 2-100 nm. The sites of the most abundant reduction of metal salts to nanoparticles were the chloroplasts, regions of high reducing sugar (glucose and fructose) content. We propose that these sugars are responsible for the reduction of these metals and other metal salts with reduction potentials over +0.16 V and that the amount of reducing sugar present or produced determines the quantity of metal nanoparticles that may be formed.  相似文献   

18.
On the basis of a combination of previously published experimental procedures, ultraviolet–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray measurements, a systematic investigation was carried out on the phase-transfer characteristics of different bimetallic nanoparticles (Ag–Au, Ag–Pt, Ag–Ru, Au–Pt, Au–Ru, and Pt–Ru) formed by the seed-mediated growth reactions. The different phase-transfer characteristics of the monometallic nanoparticles of Au, Ag, Pt, and Ru were used to form the basis of differentiation between various possible structures existing in the bimetallic systems (core-shell particles or a physical mixture of nanoparticles). The experimental results indicate clearly the formation of core-shell nanoparticles of Ag–Au, Ag–Pt, Ru–Ag, Pt–Au, Au–Ru, and Pt–Ru when the nanoparticles of the first metal were used as the seeds in the seed-mediated growth reactions. However, when the order of the synthesis was reversed using the nanoparticles of the second metal as the seeds, only a physical mixture of the two metal nanoparticles was obtained instead.Parts of the data on Au–Ru and Ag–Pt systems have been published in Analytica Chimica Acta (2005, 537, 279–284) and Journal of Physical Chemistry B (2005, 109, 5468–5472), respectively.  相似文献   

19.
Generally, limited research is extended in studying stability and applicational properties of silver nanoparticles (Ag NPs) synthesized by adopting ‘green chemistry’ protocol. In this work, we report on the synthesis of stable Ag NPs using plant-derived materials such as leaf extract of Neem (Azadirachta indica) and biopolymer pectin from apple peel. In addition, the applicational properties of Ag NPs such as surface-enhanced Raman scattering (SERS) and antibacterial efficiencies were also investigated. As-synthesized nanoparticles (NPs) were characterized using various instrumentation techniques. Both the plant materials (leaf extract and biopolymer) favored the synthesis of well-defined NPs capped with biomaterials. The NPs were spherical in shape with an average particle size between 14-27 nm. These bio-NPs exhibited colloidal stability in most of the suspended solutions such as water, electrolyte solutions (NaCl; NaNO3), biological solution (bovine serum albumin), and in different pH solutions (pH 7; 9) for a reasonable time period of 120 hrs. Both the bio-NPs were observed to be SERS active through displaying intrinsic SERS signals of the Raman probe molecule (Nile blue A). The NPs were effective against the Escherichia coli bacterium when tested in nutrient broth and agar medium. Scanning and high-resolution transmission electron microscopy (SEM and HRTEM) images confirmed cellular membrane damage of nanoparticle treated E. coli cells. These environmental friendly template Ag NPs can be used as an antimicrobial agent and also for SERS based analytical applications.  相似文献   

20.
Chen  Xiaojuan  Wen  Rui  Zhang  Lisheng  Lahiri  Abhishek  Wang  Peijie  Fang  Yan 《Plasmonics (Norwell, Mass.)》2014,9(4):945-949

In this paper, we highlight the formation of Ag/Au core-shell nanoparticles at room temperature by using a low-power laser. We have investigated the plasmon-induced reduction of Ag+ ions on bare Au nanoparticles synthesized by laser ablation technique, and citrate-capped Au nanoparticles synthesized by chemical method. It is demonstrated that citrate plays an important role for the reduction of silver ions. The citrate gets oxidized by the ‘hot’ holes produced due to the surface plasmon resonance (SPR) of the Au nanoparticles which then reduces the Ag+ ions to Ag. The importance of excitation laser wavelength is also demonstrated to facilitate the reduction process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号